
A SOFTWARE IMPLEMENTATION OF A CYCLE PRECISION SIMULATOR

OF A MULTIPLE ASSOCIATIVE MODEL

Wittaya Chantamas and Johnnie W. Baker

Kent State University

Department of Computer Science

Kent State University, Kent, OHIO 44242 USA

wchantam@cs.kent.edu and jbaker@cs.kent.edu

ABSTRACT

The Multiple Associative Computing (MASC) parallel

model is a generalization model of an Associative

Computing (ASC) parallel model designed to support

multiple ASC data parallel threads by using control

parallelism. The MASC model is designed to combine the

advantages of both Single Instruction Stream Multiple Data

Streams (SIMD) and Multiple Instruction Streams Multiple

Data Streams (MIMD) models. Here is the first time that a

complete description of MASC model has been

implemented (in software) true to its original description. A

cycle precision simulator is built to demonstrate the

performance of MASC on various multithreaded

algorithms. The simulator is a software prototype for the

model with sufficient software details to allow it to be

converted into a hardware prototype of the model. If a

reasonable limit for the number of threads simultaneously

supported is assumed, the resulting hardware design is not

only easily to implement, but can easily support a huge

number of processing units and is a excellent candidate

architecture for supporting large scale (e.g., terascale and

petascale) computing. Experimental results shows that,

when processing large-scale instances using multiple

workers, the algorithm executed by the MASC model using

a static task assignment scheme provides strong scaling

with constant time overhead.

KEY WORDS

Associative Computing, Joint Data and Control Parallelism,

Model Simulation, Large Scale Computing

1. INTRODUCTION

The MASC model is a multi-SIMD model that uses control

parallelism to coordinate the interactions of data parallel

threads and supports “associative SIMD” execution of each

of its threads. The ASC model is basically a SIMD parallel

computer that has been enhanced (in hardware) so it can

support a few basic reductions and operations in constant

time and is more efficient and easier to program than

SIMD. These constant time operations not only simplify the

programming and the process of evaluating the complexity

of algorithms but are extremely useful in parallel database

operations and for applications such as air traffic control

(which involves large dynamic databases). Each of the

concurrent ASC executions of a task is performed by one of

the MASC instruction streams (ISs) and the processors

currently listening to this IS. In addition, the predictability

of SIMD computers, which allows the worst case time to be

calculated very accurately, is also an important feature of

this model and is very important for real-time applications

with critical deadlines. In fact, the ASC model was

motivated by the STARAN associative SIMD parallel

computer, which was designed by Kenneth Batcher and

built by Goodyear Aerospace in the early 1970’s for the air

traffic control problem. A second generation version of the

STARAN (the ASPRO) was used extensively by the Navy

for an air defense system type application.

The original definition of MASC in ACM Communications

in 1992 and subsequent publications provided a detailed

specification of all aspects of the model other than

information about how the communications and interactions

between the multiple instruction streams can be supported

and controlled. This paper provides a simulator that

completely satisfies the original MASC model description

and provides details about how MASC can support the

instruction streams interactions by using a structure control

scheme that is easy to implement. This approach allows

MASC to preserve the properties of the ASC model it

extends such as the predictable running time of programs.

In a sense, this paper provides a completion of the MASC

definition by providing an example of a more detailed

MASC description that satisfies all of the original MASC

requirements and is architecturally buildable. It can provide

a showcase example of a more detailed description of

MASC that is both simple and preserves all the desired

properties of ASC.

Although a hardware prototype multithreaded associative

SIMD (an alternative version of ASC) had been developed

using FPGA by Schaffer [12] in 2007, no hardware

prototype of the MASC model has been developed yet. This

is the first time that the MASC model has been completely

implemented on a platform true to the original MASC

description. Moreover, this paper provides a major

extension of earlier work of Chantamas [3, 4], where their

focus were to introduce the concept of using the manager-

worker instruction stream paradigm to control interactions

and communications between the ISs and an alternative

method to produce MASC object codes directly from an

ASC program (using the ASC programming language) for

the MASC model. This paper completes the work on the

MASC model with the manager-worker paradigm by

presenting a complete description of using the manager-

worker enhancement introduced in [3]. Additionally, an

implementation of a new cycle precision MASC simulator

to run MASC programs is provided. While the techniques

used in this paper have been used with asynchronous

systems, not much attention has been given to implementing

synchronous systems that execute multiple data parallel

processes concurrently, using SIMD computations to

execute each of the data parallel processes. Coordinating

and managing the communication and interaction between

these SIMD processes in an efficient way and so that SIMD

and ASC features (including predictability of execution

time) are preserved is nontrivial.

This paper organizes into five main sections. Section one is

this introduction. Section two provides the description of a

MASC model consisting of manager and worker ISs.

Section three describes the cycle precision software

simulator. Section four provides the example multithreaded

algorithm for the MASC simulator and its results. Section

five concludes the work presented in this paper.

IS 0

IS 1

IS 2

IS j-1

IS j-2

PE Memory

Worker
 Instruction Streams

Manager
Instruction Stream

C
el

l N
et

w
o

rk

Cells

B
ro

ad
ca

st
 a

n
d

 R
ed

u
ct

io
n

 N
et

w
o

rk
s

PE Memory

PE Memory

PE Memory

PE Memory

PE Memory

PE Memory

..
.

..
.

In
st

ru
ct

io
n

 S
tr

ea
m

 B
ro

ad
ca

st
 a

n
d

R
ed

u
ct

io
n

 N
et

w
o

rk

Figure 1. A MASC model using the manager-worker paradigm

2. THE MASC MODEL

As shown in Figure 1, a MASC model using the manager-

worker paradigm consists of an array of processing

elements (PEs), a number of ISs (one manager and a several

workers), one broadcast and reduction network for each IS,

and another broadcast and reduction network serving as the

IS network. A MASC model with n PEs and m ISs is

denoted as MASC(n,m).

All PEs are identical and are very simple, i.e., basically

ALUs. Each PE, paired with its row of memory or local

memory, is called a cell. The terms PEs and cells are, often,

used interchangeably. Normally, a record of a set of data is

stored in the memory of each cell. When the number of

records is greater than the number of cells available, two or

more records will be folded into one cell. The experimental

results of both scenarios will be shown in section 4.

Moreover, each cell had a mask register, usually a 1 bit

register. The mask register indicates whether that cell is a

responder (currently active) or not.

Historically, an instruction streams for a SIMD is called a

control unit or a front end. Similar to a control unit of a

SIMD computer, an instruction stream is a processor and

able to fetch, decode, and broadcast instructions to its PEs.

The number of ISs is expected to be considerably smaller

than the number of PEs and corresponds to the number of

SIMD threads that can be active at the same time. Both ISs

and PEs have unique ID numbers and each knows its

number. An IS may broadcast a value to PEs or read a value

from a PE or PEs grouped under it.

A MASC model may have three types of networks, namely,

a cell network for cell communications, an instruction

stream network for instruction stream communications, and

broadcast and reduction networks for communication

between instruction streams and their sets of PEs. A cell

network is an optional to the model as it has been shown by

Trahan [13] that with or without cell network, the power of

the MASC model remains unchanged. The broadcast and

reduction network is essential to the MASC model. It may

be implemented using separate network circuits or sharing

the same network circuit for both broadcasting and global

reduction operations. In practice, the network can be

constructed as a tree-structured set of resolver circuits as

shown in Figure 2. Further details are given in [7].

IS

4-PE resolver 4-PE resolver 4-PE resolver4-PE resolver

4-PE resolver 4-PE resolver 4-PE resolver4-PE resolver

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

4-PE resolver

. . .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

4-PE Resolver Circuits

Instruction Stream

PEs

Network Processors

Communication Links

Figure 2. A broadcast and reduction network with an IS and PEs attached

The MASC model possesses certain constant time global

properties such as constant time broadcasting, constant time

global Maximum/Minimum and AND/OR reduction

operations, and constant time associative search. These

constant time global properties depend largely on the use of

a broadcast and reduction network and the constant time

timing was justified by Jin [7]. With these properties, the

MASC model is not only able to solve a wide range of

problems effectively [1][5] but also can provide solutions to

problems in special areas such as real-time air traffic

control in an extremely efficient manner, using worst case

analysis to ensure that all deadlines are met [8]. These

constant time operations not only simplify the programming

and the process of evaluating the complexity of algorithms

but are extremely useful in parallel database operations and

for applications such as air traffic control. Each of the

concurrent ASC executions of a task is performed by one of

the MASC IS and the processors currently listening to this

IS. In addition, the predictability of SIMD computers,

which allows the worst case time to be calculated very

accurately, is also an important feature of this model and is

very important for real-time applications with critical

deadlines. An associative language that supports the ASC

model (also called ASC) has been implemented on a

number of SIMD platforms by Potter [10, 11]. However a

languages similar to C* designed for the Connection

Machine [9] or C
n
 for ClearSpeed [15] can also support

associative computing.

In [13], relationships between the MASC model and other

computational models such as Reconfigurable Multiple Bus

Machine (RMBM), Reconfigurable Mesh (RM), and the

PRAM models have been established. Related models can

be placed into two groups based on their power as follows.

o Group 1: ASC, MASC, Basic-RMBM, Segmenting-

RMBM, PRAM, Basic-RM.

o Group 2: Fused-RMBM, Extended-RMBM, RM,

Linear-RM.

Since all models in the same group have the same power

and any model in Group 2 is more powerful that any model

in Group 1, the MASC model has been shown to be

powerful as ASC, Basic-RMBM, Segmenting-RMBM,

COMMON CRCW PRAM, and Basic-RM models.

3. THE CYCLE PRECISION MASC SOFTWARE

SIMULATOR

A cycle precision software simulator is built as a Win32

console application using C++ language running on a PC to

allow the user to evaluate the efficiency of MASC on

executing the algorithm on data of varying sizes and with a

various number of ISs. A MASC C++ library was

developed so MASC functions can be called from the

library when a user wants to execute a MASC programs.

The main MASC functions are global (AND/OR and

MIN/MAX) reductions, an associative search operation,

any-responder operation, and lastly, pick-one operation.

More details of these functions are described in section 3.1.

This simulator is able to provide the exact number of

operational steps the model requires to execute a given

program. When a MASC program is executed, the number

of operational steps taken by an algorithm is determined by

counting the number of steps (the number of steps

executing the task and the number of steps required during

task synchronizations, if any) of the longest execution path

of the algorithm. A basic operation (within the word length)

such as arithmetic or logical, broadcast or reduction, and

memory accessing operation is assumed to cost one

operational step. Similarly, a complex operation consisting

of j basic operations is assumed to cost j operational steps.

A parallel version of Floyd-Warshall all-pairs shortest path

algorithm is used in section 4 to demonstrate the

performance of the MASC model using a static task

assignment scheme.

3.1 Simulating the MASC Properties

In contrast to a number of other parallel models and similar

to the ASC model, the MASC model possesses certain

constant time global properties such as constant time

broadcasting, constant time global reduction operations,

and constant time associative search. This section describes

how these operations can be done in the simulator.

o Global (AND/OR and MIN/MAX) Reductions: The

MASC model supports constant time global bitwise

AND/OR reduction and Maximum/Minimum

operations. For each group of 4 PEs, data are sent to its

4-PE resolver circuit. The resolver circuit does a

reduction (AND/OR, MIN/MAX) operation and

propagates a value to its next level resolver circuit.

Next level 4-PE resolvers continue reducing values and

propagate the values back up until the IS gets the final

reduction result. Since we treated the whole broadcast

and reduction network’s gate delay as a constant time

operation as justified by Jin [7] and each 4-PE resolver

circuit does an operation in constant time, the MASC

model supports a constant time global reduction

operation.

o An Associative Search Operation: This operation can

be performed as follows. An IS broadcasts an

instruction to its PEs to execute a conditional

expression. If a PE satisfies the condition, it sets its

mask bit to 1. Otherwise, it resets its mask bit to 0.

Since each step takes constant time, the associative

search operation is a constant time operation

o Any-Responder Operation: This operation is usually

performed after an associative search operation. An IS

does a global OR reduction on mask bits of its PEs. If

the returned result of the reduction is 1, then there is a

responder. Otherwise, there is no responder. Since a

global OR reduction takes constant time, the Any-

Responder operation is a constant time operation.

o Pick-One Operation: This operation is usually

performed after the previous Any-Responder operation

returned 1 as the result. An IS does a global MAX

(MIN) reduction on PE ID of its PEs, whose mask bits

are 1. The returned result is the ID of a PE that will be

selected. Later, the instruction stream may instruct that

PE to reset its mask bit to 0 in order to avoid picking

the PE again next round. Since a global MAX (MIN)

reduction is a constant time operation, a Pick-One

operation is also a constant time operation.

// Check for any responder by performing // a Boolean OR

reduction of mask registers // of active PEs

bool MASC::AnyResponder(int t_id)

{

 bool found = false;

 found =

 BoolOrReduction(t_id, mask_register);

 return found;

}

Figure 3. A sample code of the any-responder function

3.2 Simulating the MASC Instruction Streams

The manager IS (or manager) can be simulated using 5-

execution phase simulation cycles. The 5-execution phase

consists of Finished, Fork, Assign, Join, and Termination

phases. During a simulation cycle, some phases may be

skipped but at least one phase must be simulated.

o Finished: The manager collects finished tasks from

workers, if there is any finished task.

o Fork: The manager forks children tasks from prior

finished parent tasks, if there is a fork task.

o Assign: The manager assigns new tasks from the task

pool to idle workers, if there is a task and an idle

worker.

o Join: The manager joins finished children tasks into

one combined task, if there are to-be-joined tasks

waiting.

o Termination: The manager checks for a terminal state.

The program will be terminated if all of these

conditions are true: the task pool is empty, no task is

waiting to be forked or joined, and all workers are idle.

Otherwise, the simulation starts at the finished phase

again.

Worker ISs (or workers) can be simulated using 3-

execution states. The 3 states are Ready, Busy, and Finish.

o Ready: This is the initial state for all workers. At this

state, no PE is associated with a worker. The worker is

idle and waits for the manager to assign it a task.

o Busy: A worker changes its state from Ready to Busy

after the manager has assigned it a task. At this state, a

task—a set of instructions along with a group of PEs—

is assigned to the worker. In a rare case, the group of

PEs may be an empty set. Nevertheless, the worker

executes the assigned task following the flow of the

program.

o Finish: After the worker has finished the assigned task

and switched its PEs back to the manager, it changes its

state from Busy to Finish. At this state, its PEs are no

longer associated with the worker. After the manager

has collected the finished task, the worker changes its

state from Finish to Ready.

4. EXAMPLE MULTITHREADED MASC

ALGORITHM

This section discuses the MASC Floyd-Warshall algorithm

and its results first. The MASC model uses a static task

assignment scheme to execute this algorithm. In this static

task assignment scheme, assignments of tasks to instruction

streams can be done simultaneously using a constant

number of broadcasts to PEs and workers by the manager.

Up to n concurrent tasks can be assigned to n worker

instruction streams at a time for an input graph G with n

vertices. The task assignment cost remains constant

regardless of the number of assigned tasks generated by the

algorithm.

Note that, not all algorithms can be used static task

assignment scheme. The important characteristics of an

algorithm to be used a static task assignment scheme are,

first, the computation time per task (a partition of PEs and

instructions) is constant and, second, the number of tasks is

static for a given problem size. Mapping of problem tasks

in the algorithm to instruction streams are predetermined

(cannot be changed during runtime) and done statically.

The first set of results is from non fixed size MASC. Each

cell will always contain only one record of a set of data in

the memory. So, the input size of 32x32-matrix requires a

MASC with 1024 PEs. The second set of results is from a

fixed size MASC(64PEs, 1+8ISs). Two or more records

will be folded into one cell, when the number of records is

greater than the number of cells available. For example, in

the case of 16x16-matrix input, a 2x2 or 4 records are

folded into one cell.

Mapped to
PEs

8D

5

3

2

10

A B

C

10

0

0

0

0

8

5

3

2

 

 



 

PE
(0,0)

PE
(0,1)

PE
(0,2)

PE
(0,3)

PE
(1,0)

PE
(1,1)

PE
(1,2)

PE
(1,3)

PE
(2,0)

PE
(2,1)

PE
(2,2)

PE
(2,3)

PE
(3,0)

PE
(3,1)

PE
(3,2)

PE
(3,3)

Its
adjacency

matrix

Figure 4. The adjacency matrix of a 4-vertex input graph is divided into 4
2
 elements and mapped to 16 PEs

Mapped to
4 PEs

8D

5

3

2

10

A B

C

10

0

0

0

0

8

5

3

2

 

 



 

Its
adjacency

matrix

0 3

0 5

2 0 10

8 0

PE(0,0)















PE(0,1)

PE(1,0) PE(1,1)

Figure 5. The same adjacency matrix is divided into 4
2
 elements and mapped to 4 PEs

4.1 The MASC Floyd-Warshall All-pairs Shortest Path

Algorithm and Its Performances on the Simulator

The Floyd-Warshall algorithm is an algorithm to find

shortest paths between every pairs of vertices in a weighted

directed graph purposed by Floyd [6]. The algorithm is

based on a theorem by Warshall [14], which described how

to compute a transitive closure of boolean matrices.

The algorithm solves the all-pairs shortest path problem by

transforming a slightly modified adjacency matrix for the

graph into a matrix whose (i, j) entry contains the shortest

distance from vi to vj for all pairs of vertices. The slightly

modified adjacency matrix used in this process has the

weight d(vi, vj) of the edge from vertices vi to vj in its (i, j)

entry. In addition, d(vi, vj) is set to 0 if i = j and set to ∞ if

there is no edge between vi and vj.

The adjacency matrix of the input graph has to be altered

with path estimates between identical vertices set to 0 and

estimates between two vertices not jointed by an edge set to

∞ and becomes the input matrix A0 consisting of its first

approximation of path length using edge lengths. For a non

fixed size MASC model, A0 is divided into n
2
 elements and

each PE is responsible for an element of the matrix as

shown in Figure 4. For a fixed size MASC model, A0 is

divided into n
2
 elements and each PE is responsible for k

2

elements of the matrix as shown in Figure 5.

PE
(0,0)

PE
(0,1)

PE
(0,2)

PE
(0,3)

PE
(1,0)

PE
(1,1)

PE
(1,2)

PE
(1,3)

PE
(2,0)

PE
(2,1)

PE
(2,2)

PE
(2,3)

PE
(3,0)

PE
(3,1)

PE
(3,2)

PE
(3,3)

IS
1

IS
2

IS
3

IS
4

PE
(0,0)

PE
(0,1)

PE
(0,2)

PE
(0,3)

PE
(1,0)

PE
(1,1)

PE
(1,2)

PE
(1,3)

PE
(2,0)

PE
(2,1)

PE
(2,2)

PE
(2,3)

PE
(3,0)

PE
(3,1)

PE
(3,2)

PE
(3,3)

IS
1

IS
2

IS
3

IS
4

(a) (b)

Figure 6. (a) Column-wise block-striped and (b) row-wise block-striped decompositions of the matrix

During the course of execution, PEs are partitioned into

either row-wise or column-wise block-striped

decompositions as shown in Figure 6. In general, each PE

partition is controlled by a worker. Otherwise, two or more

PE partitions may be assigned to each worker equally.

Figure 7. Results of the MASC implementation of the modified Floyd-Warshall algorithm on the simulator using non-

fixed size MASC with 64, 256, 1024, and 4096 PEs on the input size of 64, 256, 1024, and 4096, respectively

4.2 The Performance of the MASC Floyd-Warshall

Algorithm on the Simulator

The parallel performance is evaluated using scale-free

graphs (R-MAT) [2] that represents unstructured data with

the following parameters; a=0.17, b=0.55, c=0.18, and

d=0.10 where a + b + c + d = 1 and using up to m workers

for a graph with m vertices. In the first part of the

experiment, a MASC(n
2
 PEs, 1+m ISs) is used and the

stripe size is n/m where n and m are powers of 2.

In this problem, the number of operational steps executed is

independent to the input. Two different input sets (with the

same size), when are executed on the same size MASC

model, require the same number of operational steps. As

shown in Figure 7, a bigger MASC (more worker

instruction streams) will execute the MASC Floyd-Warshall

algorithm (for the given input R-MAT graph) faster than a

smaller MASC model does. When the problem size gets

twice as big, i.e., from a 8-vertex R-MAT graph to a 16-

vertex R-MAT graph, the execution time of an ASC

quadruple, while the execution of a MASC does not

quadruple. When using the maximum number of worker

instruction streams allowed, the execution of a MASC

increases about double. From this observation, one can

conclude that a MASC model scales better to this Floyd-

Warshall algorithm than an ASC model does. Also, using

more workers will execute the algorithm (for a given input

R-MAT graph) faster than using fewer workers and lowers

the worker utilization (each worker doing less work).

Unfortunately, the maximum number of usable worker

instruction streams is limited to |V|. In this implementation

of the algorithm, using more than n = |V| worker instruction

streams will not reduce the execution time since the

maximum worker instruction stream tasks available is |V|

tasks.

Figure 8. Results of the MASC implementation of the modified Floyd-Warshall algorithm on the simulator using a

fixed size MASC(64 PEs, 1+8 ISs) comparing to those of a non-fixed size MASC(n PEs, 1+8 ISs) on the input size of

64, 256, 1024, and 4096, respectively

For a fiexed size MASC, folding of records in a cell

increases the sequential execution portion of the program

(each PE applies updat to each of its records one at a time).

As shown in Figure 8, the more records are in a single cell,

the slower the execution time when comparing with a

MASC model with no folding of records. In reality, a fixed

size system, not a non fixed size, is more practical and

probably the one we have or will build. Modern

supercomputers nowadays can be built using numerous

numbers of processors from a few thousands cores to

hundreds of thousand cores, i.e., the Jaguar system at Oak

Ridge National Laboratory contains about 224 thousand of

AMD Opteron cores and the JUGENE at

Forschungszentrum Juelich (Germany) contains about 294

thousand PowerPC cores [16]. It is highly possible for

someone to build a Multi-SIMD system with 256 thousand

of processors since SIMD processors are much less

complex than those CPU cores used in many of the systems

in the Top 500 List. For this modified Floyd-Warshall

algorithm, one processor of this 256K PE SIMD system is

only taking care of 32 by 32 elements of the adjacency

matrix of 2
28

 vertex graph.

5. CONCLUSION

We have successfully developed a software implementation

of a MASC model that is true to MASC’s original

description using a cycle precision simulator. The simulator

shows the ability of the MASC model with the manager-

worker instruction stream paradigm to address a graph

problem such as all-pairs shortest path problem using a

static task assignment scheme. It can be concluded from the

results that problems that can use a static task assignment

technique perform very well using the MASC model and

benefit from using the MASC model instead of the ASC

model, which is a strict SIMD model. In particular, when

processing large-scale instances using multiple workers,

this algorithmic solution shows strong scaling with constant

time overhead on this massively multithreaded problem. As

a result, this algorithm scales better on the MASC model

than on the ASC model.

Moreover, a MASC model using the manager-worker

instruction stream paradigm combines the advantages of the

SIMD and MIMD models by using control parallelism to

support multiple ASC threads while maintaining both the

scalability and predictability of the SIMD model with the

improved flexibility. By using the manager-worker

paradigm, the MASC model supports a large class of

algorithms for both simple and massively multithreaded

problems with better efficiency than a strict SIMD model,

but results in some thread synchronization overheads.

REFERENCES

[1] M. Atwah, J. W. Baker, and S. Akl, An Associative

Implementation of Classical Convex Hull Algorithm, Proc.

8th IASTED Intl. Conf. on Parallel and Distributed

Computing Systems, Chicago, IL, October 1996. 435-438.

[2] D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-MAT: A

Recursive Model for Graph Mining, Proc. fourth SIAM Intl.

Conf. on Data Mining (SDM), Orlando, FL, April 2004.

[3] W. Chantamas, J. W. Baker, A Multiple Associative Model

to Support Branches in Data Parallel Applications using the

Manager-Worker Paradigm, Proc. 19th IEEE Intl. Parallel

and Distributed Processing Symposium (Workshop 14),

Denver, CO, 2005, vol. 15, p. 266b.

[4] W. Chantamas, J. Baker, and M. Scherger, Compiler

Extension of the ASC Language to Support Multiple

Instruction Streams in the MASC Model Using the Manager-

worker Paradigm, Proc. PDPTA 2006, Las Vegas, NV, June

2006, Volume 1. CSREA Press 2006.

[5] M. C. Esenwein and J. Baker, VLDC String Matching for

Associative Computing and Multiple Broadcast Mesh, Proc.

the IASTED Intl. Conf. on Parallel and Distributed

Computing and Systems, Barcelona, Spain, 1997, 69-74.

[6] R. W. Floyd, Algorithm 97 (Shortest Path), Communications

of the ACM, 5(6):345, 1962.

[7] M. Jin, J. Baker, and K. Batcher, Timing for Associative

Operations on the MASC Model, Proc. 15th IEEE Intl.

Parallel and Distributed Processing Symposium (Workshop

in Massively Parallel Processing), San Francisco, CA, 2001,

193.

[8] W. Meilander, J. Baker, and M. Jin, Importance of SIMD

Computation Reconsidered, Proc. 17th IEEE Intl. Parallel

and Distributed Processing Symposium (Workshop on

Massively Parallel Processing), Nice, France, 2003, 266a.

[9] J. Palmer, and, G.L. Steele, Jr., Connection Machine Model

CM-5 System Overview, Proc. Fourth Symposium on the

Frontiers of Massively Parallel Computation, McLean, VA,

1992, 474-483.

[10] J. Potter, Associative computing: a programming paradigm

for massively parallel computer (Plenum Press, New York,

1992).

[11] J. Potter, J. W. Baker, S. Scott, A. Bansal, C. Leangsuksun,

and C. Asthagiri, ASC: An Associative-Computing

Paradigm, Computer (27), 1994, 19-25.

[12] K. Schaffer and R. Walker, A Prototype Multithreaded

Associative SIMD Processor, Proc. 21st 19th IEEE Intl.

Parallel and Distributed Processing Symposium (Workshop

on Advances in Parallel and Distributed Computing

Models), Long Beach, CA, 2007, 228.

[13] J. L. Trahan, M. Jin, W. Chantamas, and J. Baker, Relating

the power of the Multiple Associative Computing (MASC)

model to that of reconfigurable bus-based models, Journal of

Parallel and Distributed Computing, 70, 2010, 458-466.

[14] S. Warshall, A Theorem on Boolean Matrices, Journal of the

ACM, 9(1), 1962, 11-12.

[15] http://www.clearspeed.com.

[16] http://www.top500.org.

