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ABSTRACT 

The Multiple Associative Computing (MASC) parallel 

model is a generalization model of an Associative 

Computing (ASC) parallel model designed to support 

multiple ASC data parallel threads by using control 

parallelism. The MASC model is designed to combine the 

advantages of both Single Instruction Stream Multiple Data 

Streams (SIMD) and Multiple Instruction Streams Multiple 

Data Streams (MIMD) models. Here is the first time that a 

complete description of MASC model has been 

implemented (in software) true to its original description. A 

cycle precision simulator is built to demonstrate the 

performance of MASC on various multithreaded 

algorithms. The simulator is a software prototype for the 

model with sufficient software details to allow it to be 

converted into a hardware prototype of the model. If a 

reasonable limit for the number of threads simultaneously 

supported is assumed, the resulting hardware design is not 

only easily to implement, but can easily support a huge 

number of processing units and is a excellent candidate 

architecture for supporting large scale (e.g., terascale and 

petascale) computing. Experimental results shows that, 

when processing large-scale instances using multiple 

workers, the algorithm executed by the MASC model using 

a static task assignment scheme provides strong scaling 

with constant time overhead. 
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1. INTRODUCTION 
 

The MASC model is a multi-SIMD model that uses control 

parallelism to coordinate the interactions of data parallel 

threads and supports “associative SIMD” execution of each 

of its threads. The ASC model is basically a SIMD parallel 

computer that has been enhanced (in hardware) so it can 

support a few basic reductions and operations in constant 

time and is more efficient and easier to program than 

SIMD. These constant time operations not only simplify the 

programming and the process of evaluating the complexity 

of algorithms but are extremely useful in parallel database 

operations and for applications such as air traffic control 

(which involves large dynamic databases). Each of the 

concurrent ASC executions of a task is performed by one of 

the MASC instruction streams (ISs) and the processors 

currently listening to this IS. In addition, the predictability 

of SIMD computers, which allows the worst case time to be 

calculated very accurately, is also an important feature of 

this model and is very important for real-time applications 

with critical deadlines. In fact, the ASC model was 

motivated by the STARAN associative SIMD parallel 

computer, which was designed by Kenneth Batcher and 

built by Goodyear Aerospace in the early 1970’s for the air 

traffic control problem. A second generation version of the 

STARAN (the ASPRO) was used extensively by the Navy 

for an air defense system type application. 

The original definition of MASC in ACM Communications 

in 1992 and subsequent publications provided a detailed 

specification of all aspects of the model other than 

information about how the communications and interactions 

between the multiple instruction streams can be supported 

and controlled. This paper provides a simulator that 

completely satisfies the original MASC model description 

and provides details about how MASC can support the 

instruction streams interactions by using a structure control 

scheme that is easy to implement. This approach allows 

MASC to preserve the properties of the ASC model it 

extends such as the predictable running time of programs. 

In a sense, this paper provides a completion of the MASC 

definition by providing an example of a more detailed 

MASC description that satisfies all of the original MASC 

requirements and is architecturally buildable. It can provide 

a showcase example of a more detailed description of 

MASC that is both simple and preserves all the desired 

properties of ASC. 

Although a hardware prototype multithreaded associative 

SIMD (an alternative version of ASC) had been developed 

using FPGA by Schaffer [12] in 2007, no hardware 



prototype of the MASC model has been developed yet. This 

is the first time that the MASC model has been completely 

implemented on a platform true to the original MASC 

description. Moreover, this paper provides a major 

extension of earlier work of Chantamas [3, 4], where their 

focus were to introduce the concept of using the manager-

worker instruction stream paradigm to control interactions 

and communications between the ISs and an alternative 

method to produce MASC object codes directly from an 

ASC program (using the ASC programming language) for 

the MASC model. This paper completes the work on the 

MASC model with the manager-worker paradigm by 

presenting a complete description of using the manager-

worker enhancement introduced in [3]. Additionally, an 

implementation of a new cycle precision MASC simulator 

to run MASC programs is provided. While the techniques 

used in this paper have been used with asynchronous 

systems, not much attention has been given to implementing 

synchronous systems that execute multiple data parallel 

processes concurrently, using SIMD computations to 

execute each of the data parallel processes. Coordinating 

and managing the communication and interaction between 

these SIMD processes in an efficient way and so that SIMD 

and ASC features (including predictability of execution 

time) are preserved is nontrivial. 

This paper organizes into five main sections. Section one is 

this introduction. Section two provides the description of a 

MASC model consisting of manager and worker ISs. 

Section three describes the cycle precision software 

simulator. Section four provides the example multithreaded 

algorithm for the MASC simulator and its results. Section 

five concludes the work presented in this paper. 
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Figure 1. A MASC model using the manager-worker paradigm 

 

 

2. THE MASC MODEL 
 

As shown in Figure 1, a MASC model using the manager-

worker paradigm consists of an array of processing 

elements (PEs), a number of ISs (one manager and a several  

workers), one broadcast and reduction network for each IS, 

and another broadcast and reduction network serving as the 

IS network. A MASC model with n PEs and m ISs is 

denoted as MASC(n,m).  

All PEs are identical and are very simple, i.e., basically 

ALUs. Each PE, paired with its row of memory or local 

memory, is called a cell. The terms PEs and cells are, often, 

used interchangeably. Normally, a record of a set of data is 

stored in the memory of each cell. When the number of 

records is greater than the number of cells available, two or 

more records will be folded into one cell. The experimental 

results of both scenarios will be shown in section 4. 

Moreover, each cell had a mask register, usually a 1 bit 

register. The mask register indicates whether that cell is a 

responder (currently active) or not. 

Historically, an instruction streams for a SIMD is called a 

control unit or a front end. Similar to a control unit of a 

SIMD computer, an instruction stream is a processor and 

able to fetch, decode, and broadcast instructions to its PEs. 

The number of ISs is expected to be considerably smaller 

than the number of PEs and corresponds to the number of 

SIMD threads that can be active at the same time. Both ISs 

and PEs have unique ID numbers and each knows its 

number. An IS may broadcast a value to PEs or read a value 

from a PE or PEs grouped under it. 

A MASC model may have three types of networks, namely, 

a cell network for cell communications, an instruction 

stream network for instruction stream communications, and 

broadcast and reduction networks for communication 

between instruction streams and their sets of PEs. A cell 

network is an optional to the model as it has been shown by 

Trahan [13] that with or without cell network, the power of 



the MASC model remains unchanged. The broadcast and 

reduction network is essential to the MASC model. It may 

be implemented using separate network circuits or sharing 

the same network circuit for both broadcasting and global 

reduction operations. In practice, the network can be 

constructed as a tree-structured set of resolver circuits as 

shown in Figure 2. Further details are given in [7]. 
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Figure 2. A broadcast and reduction network with an IS and PEs attached 

 

The MASC model possesses certain constant time global 

properties such as constant time broadcasting, constant time 

global Maximum/Minimum and AND/OR reduction 

operations, and constant time associative search. These 

constant time global properties depend largely on the use of 

a broadcast and reduction network and the constant time 

timing was justified by Jin [7]. With these properties, the 

MASC model is not only able to solve a wide range of 

problems effectively [1][5] but also can provide solutions to 

problems in special areas such as real-time air traffic 

control in an extremely efficient manner, using worst case 

analysis to ensure that all deadlines are met [8]. These 

constant time operations not only simplify the programming 

and the process of evaluating the complexity of algorithms 

but are extremely useful in parallel database operations and 

for applications such as air traffic control. Each of the 

concurrent ASC executions of a task is performed by one of 

the MASC IS and the processors currently listening to this 

IS. In addition, the predictability of SIMD computers, 

which allows the worst case time to be calculated very 

accurately, is also an important feature of this model and is 

very important for real-time applications with critical 

deadlines. An associative language that supports the ASC 

model (also called ASC) has been implemented on a 

number of SIMD platforms by Potter [10, 11]. However a 

languages similar to C* designed for the Connection 

Machine [9] or C
n
 for ClearSpeed [15] can also support 

associative computing. 

In [13], relationships between the MASC model and other 

computational models such as Reconfigurable Multiple Bus 

Machine (RMBM), Reconfigurable Mesh (RM), and the 

PRAM models have been established. Related models can 

be placed into two groups based on their power as follows. 

  

o Group 1: ASC, MASC, Basic-RMBM, Segmenting-

RMBM, PRAM, Basic-RM.  

o Group 2: Fused-RMBM, Extended-RMBM, RM, 

Linear-RM. 

Since all models in the same group have the same power 

and any model in Group 2 is more powerful that any model 

in Group 1, the MASC model has been shown to be 

powerful as ASC, Basic-RMBM, Segmenting-RMBM, 

COMMON CRCW PRAM, and Basic-RM models. 

 

 

3. THE CYCLE PRECISION MASC SOFTWARE 

SIMULATOR 
 

A cycle precision software simulator is built as a Win32 

console application using C++ language running on a PC to 

allow the user to evaluate the efficiency of MASC on 

executing the algorithm on data of varying sizes and with a 

various number of ISs. A MASC C++ library was 

developed so MASC functions can be called from the 

library when a user wants to execute a MASC programs. 

The main MASC functions are global (AND/OR and 

MIN/MAX) reductions, an associative search operation, 

any-responder operation, and lastly, pick-one operation. 

More details of these functions are described in section 3.1.  



This simulator is able to provide the exact number of 

operational steps the model requires to execute a given 

program. When a MASC program is executed, the number 

of operational steps taken by an algorithm is determined by 

counting the number of steps (the number of steps 

executing the task and the number of steps required during 

task synchronizations, if any) of the longest execution path 

of the algorithm. A basic operation (within the word length) 

such as arithmetic or logical, broadcast or reduction, and 

memory accessing operation is assumed to cost one 

operational step. Similarly, a complex operation consisting 

of j basic operations is assumed to cost j operational steps.  

A parallel version of Floyd-Warshall all-pairs shortest path 

algorithm is used in section 4 to demonstrate the 

performance of the MASC model using a static task 

assignment scheme. 

 

3.1 Simulating the MASC Properties 
 

In contrast to a number of other parallel models and similar 

to the ASC model, the MASC model possesses certain 

constant time global properties such as constant time 

broadcasting, constant time global reduction operations, 

and constant time associative search. This section describes 

how these operations can be done in the simulator. 

o Global (AND/OR and MIN/MAX) Reductions: The 

MASC model supports constant time global bitwise 

AND/OR reduction and Maximum/Minimum 

operations. For each group of 4 PEs, data are sent to its 

4-PE resolver circuit. The resolver circuit does a 

reduction (AND/OR, MIN/MAX) operation and 

propagates a value to its next level resolver circuit. 

Next level 4-PE resolvers continue reducing values and 

propagate the values back up until the IS gets the final 

reduction result. Since we treated the whole broadcast 

and reduction network’s gate delay as a constant time 

operation as justified by Jin [7] and each 4-PE resolver 

circuit does an operation in constant time, the MASC 

model supports a constant time global reduction 

operation. 

o An Associative Search Operation: This operation can 

be performed as follows. An IS broadcasts an 

instruction to its PEs to execute a conditional 

expression. If a PE satisfies the condition, it sets its 

mask bit to 1. Otherwise, it resets its mask bit to 0. 

Since each step takes constant time, the associative 

search operation is a constant time operation 

o Any-Responder Operation: This operation is usually 

performed after an associative search operation. An IS 

does a global OR reduction on mask bits of its PEs. If 

the returned result of the reduction is 1, then there is a 

responder. Otherwise, there is no responder. Since a 

global OR reduction takes constant time, the Any-

Responder operation is a constant time operation. 

o Pick-One Operation: This operation is usually 

performed after the previous Any-Responder operation 

returned 1 as the result. An IS does a global MAX 

(MIN) reduction on PE ID of its PEs, whose mask bits 

are 1. The returned result is the ID of a PE that will be 

selected. Later, the instruction stream may instruct that 

PE to reset its mask bit to 0 in order to avoid picking 

the PE again next round. Since a global MAX (MIN) 

reduction is a constant time operation, a Pick-One 

operation is also a constant time operation. 

 

// Check for any responder by performing   // a Boolean OR 

reduction of mask registers // of active PEs 

bool MASC::AnyResponder(int t_id) 

{ 

  bool found = false; 

 

  found =  

      BoolOrReduction(t_id, mask_register); 

 

  return found; 

} 

Figure 3. A sample code of the any-responder function 

 

3.2 Simulating the MASC Instruction Streams 
 

The manager IS (or manager) can be simulated using 5-

execution phase simulation cycles. The 5-execution phase 

consists of Finished, Fork, Assign, Join, and Termination 

phases. During a simulation cycle, some phases may be 

skipped but at least one phase must be simulated.  

o Finished: The manager collects finished tasks from 

workers, if there is any finished task.  

o Fork: The manager forks children tasks from prior 

finished parent tasks, if there is a fork task.  

o Assign: The manager assigns new tasks from the task 

pool to idle workers, if there is a task and an idle 

worker.  

o Join: The manager joins finished children tasks into 

one combined task, if there are to-be-joined tasks 

waiting.  

o Termination: The manager checks for a terminal state. 

The program will be terminated if all of these 

conditions are true: the task pool is empty, no task is 

waiting to be forked or joined, and all workers are idle. 

Otherwise, the simulation starts at the finished phase 

again. 

Worker ISs (or workers) can be simulated using 3-

execution states. The 3 states are Ready, Busy, and Finish.  

o Ready: This is the initial state for all workers. At this 

state, no PE is associated with a worker. The worker is 

idle and waits for the manager to assign it a task.  



o Busy: A worker changes its state from Ready to Busy 

after the manager has assigned it a task. At this state, a 

task—a set of instructions along with a group of PEs—

is assigned to the worker. In a rare case, the group of 

PEs may be an empty set. Nevertheless, the worker 

executes the assigned task following the flow of the 

program.  

o Finish: After the worker has finished the assigned task 

and switched its PEs back to the manager, it changes its 

state from Busy to Finish. At this state, its PEs are no 

longer associated with the worker. After the manager 

has collected the finished task, the worker changes its 

state from Finish to Ready. 

 

 

4. EXAMPLE MULTITHREADED MASC 

ALGORITHM 
 

This section discuses the MASC Floyd-Warshall algorithm 

and its results first. The MASC model uses a static task 

assignment scheme to execute this algorithm. In this static 

task assignment scheme, assignments of tasks to instruction 

streams can be done simultaneously using a constant 

number of broadcasts to PEs and workers by the manager. 

Up to n concurrent tasks can be assigned to n worker 

instruction streams at a time for an input graph G with n 

vertices. The task assignment cost remains constant 

regardless of the number of assigned tasks generated by the 

algorithm. 

Note that, not all algorithms can be used static task 

assignment scheme. The important characteristics of an 

algorithm to be used a static task assignment scheme are, 

first, the computation time per task (a partition of PEs and 

instructions) is constant and, second, the number of tasks is 

static for a given problem size. Mapping of problem tasks 

in the algorithm to instruction streams are predetermined 

(cannot be changed during runtime) and done statically.  

The first set of results is from non fixed size MASC. Each 

cell will always contain only one record of a set of data in 

the memory. So, the input size of 32x32-matrix requires a 

MASC with 1024 PEs. The second set of results is from a 

fixed size MASC(64PEs, 1+8ISs). Two or more records 

will be folded into one cell, when the number of records is 

greater than the number of cells available. For example, in 

the case of 16x16-matrix input, a 2x2 or 4 records are 

folded into one cell. 
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Figure 4. The adjacency matrix of a 4-vertex input graph is divided into 4
2
 elements and mapped to 16 PEs 
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Figure 5. The same adjacency matrix is divided into 4
2
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4.1 The MASC Floyd-Warshall All-pairs Shortest Path 

Algorithm and Its Performances on the Simulator 
 

The Floyd-Warshall algorithm is an algorithm to find 

shortest paths between every pairs of vertices in a weighted 

directed graph purposed by Floyd [6]. The algorithm is 

based on a theorem by Warshall [14], which described how 

to compute a transitive closure of boolean matrices. 

The algorithm solves the all-pairs shortest path problem by 

transforming a slightly modified adjacency matrix for the 

graph into a matrix whose (i, j) entry contains the shortest 

distance from vi to vj for all pairs of vertices. The slightly 

modified adjacency matrix used in this process has the 

weight d(vi, vj) of the edge from vertices vi to vj in its (i, j) 

entry. In addition, d(vi, vj) is set to 0 if i = j and set to ∞ if 

there is no edge between vi and vj. 



The adjacency matrix of the input graph has to be altered 

with path estimates between identical vertices set to 0 and 

estimates between two vertices not jointed by an edge set to 

∞ and becomes the input matrix A0 consisting of its first 

approximation of path length using edge lengths. For a non 

fixed size MASC model, A0 is divided into n
2
 elements and 

each PE is responsible for an element of the matrix as 

shown in Figure 4. For a fixed size MASC model, A0 is 

divided into n
2
 elements and each PE is responsible for k

2
 

elements of the matrix as shown in Figure 5. 
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Figure 6. (a) Column-wise block-striped and (b) row-wise block-striped decompositions of the matrix 

 

 

During the course of execution, PEs are partitioned into 

either row-wise or column-wise block-striped 

decompositions as shown in Figure 6. In general, each PE 

partition is controlled by a worker. Otherwise, two or more 

PE partitions may be assigned to each worker equally. 

 

 

 

Figure 7. Results of the MASC implementation of the modified Floyd-Warshall algorithm on the simulator using non-

fixed size MASC with 64, 256, 1024, and 4096 PEs on the input size of 64, 256, 1024, and 4096, respectively 

 



4.2 The Performance of the MASC Floyd-Warshall 

Algorithm on the Simulator 
 

The parallel performance is evaluated using scale-free 

graphs (R-MAT) [2] that represents unstructured data with 

the following parameters; a=0.17, b=0.55, c=0.18, and 

d=0.10 where a + b + c + d = 1 and using up to m workers 

for a graph with m vertices. In the first part of the 

experiment, a MASC(n
2
 PEs, 1+m ISs) is used and the 

stripe size is n/m where n and m are powers of 2. 

In this problem, the number of operational steps executed is 

independent to the input. Two different input sets (with the 

same size), when are executed on the same size MASC 

model, require the same number of operational steps. As 

shown in Figure 7, a bigger MASC (more worker 

instruction streams) will execute the MASC Floyd-Warshall 

algorithm (for the given input R-MAT graph) faster than a 

smaller MASC model does. When the problem size gets 

twice as big, i.e., from a 8-vertex R-MAT graph to a 16-

vertex R-MAT graph, the execution time of an ASC 

quadruple, while the execution of a MASC does not 

quadruple. When using the maximum number of worker 

instruction streams allowed, the execution of a MASC 

increases about double. From this observation, one can 

conclude that a MASC model scales better to this Floyd-

Warshall algorithm than an ASC model does. Also, using 

more workers will execute the algorithm (for a given input 

R-MAT graph) faster than using fewer workers and lowers 

the worker utilization (each worker doing less work).  

Unfortunately, the maximum number of usable worker 

instruction streams is limited to |V|. In this implementation 

of the algorithm, using more than n = |V| worker instruction 

streams will not reduce the execution time since the 

maximum worker instruction stream tasks available is |V| 

tasks. 

 

 

 

Figure 8. Results of the MASC implementation of the modified Floyd-Warshall algorithm on the simulator using a 

fixed size MASC(64 PEs, 1+8 ISs) comparing to those of a non-fixed size MASC(n PEs, 1+8 ISs) on the input size of 

64, 256, 1024, and 4096, respectively 

 

For a fiexed size MASC, folding of records in a cell 

increases the sequential execution portion of the program 

(each PE applies updat to each of its records one at a time). 

As shown in Figure 8, the more records are in a single cell, 

the slower the execution time when comparing with a 

MASC model with no folding of records. In reality, a fixed 

size system, not a non fixed size, is more practical and 

probably the one we have or will build. Modern 

supercomputers nowadays can be built using numerous 

numbers of processors from a few thousands cores to 

hundreds of thousand cores, i.e., the Jaguar system at Oak 

Ridge National Laboratory contains about 224 thousand of 

AMD Opteron cores and the JUGENE at 

Forschungszentrum Juelich (Germany) contains about 294 



thousand PowerPC cores [16]. It is highly possible for 

someone to build a Multi-SIMD system with 256 thousand 

of processors since SIMD processors are much less 

complex than those CPU cores used in many of the systems 

in the Top 500 List. For this modified Floyd-Warshall 

algorithm, one processor of this 256K PE SIMD system is 

only taking care of 32 by 32 elements of the adjacency 

matrix of 2
28

 vertex graph.  

 

 

5. CONCLUSION 
 

We have successfully developed a software implementation 

of a MASC model that is true to MASC’s original 

description using a cycle precision simulator. The simulator 

shows the ability of the MASC model with the manager-

worker instruction stream paradigm to address a graph 

problem such as all-pairs shortest path problem using a 

static task assignment scheme. It can be concluded from the 

results that problems that can use a static task assignment 

technique perform very well using the MASC model and 

benefit from using the MASC model instead of the ASC 

model, which is a strict SIMD model. In particular, when 

processing large-scale instances using multiple workers, 

this algorithmic solution shows strong scaling with constant 

time overhead on this massively multithreaded problem. As 

a result, this algorithm scales better on the MASC model 

than on the ASC model. 

Moreover, a MASC model using the manager-worker 

instruction stream paradigm combines the advantages of the 

SIMD and MIMD models by using control parallelism to 

support multiple ASC threads while maintaining both the 

scalability and predictability of the SIMD model with the 

improved flexibility. By using the manager-worker 

paradigm, the MASC model supports a large class of 

algorithms for both simple and massively multithreaded 

problems with better efficiency than a strict SIMD model, 

but results in some thread synchronization overheads. 
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