

Table C-2. Summary of Extensions to EBCDIC
to Obtain Multics Standard Codes

ASCII
Character

open bracket
left slant
close bracket
grave accent
open brace
close brace
overline/tilde
acute accent
circumflex

Unassigned
EBCDIC Card
Code Chosen

12-0-8-5
12-8-2
12-11-8-5
8-1
12-0
11-0
11-0-1
8-5
11-8-7

* • • • • •

* Same as the ASCII choice for this graphic.

Table C-3. Summary of Differences Between Multics Standard
Card Codes and Proposed ASCII Standard Card Codes

ASCII
Character

newline
exclamation point
open bracket
left slant
close bracket
vertical line

Multics
Standard
Card Code

11-9-5
11-8-2
12-0-8-5
12-8-2
12-11-8-5
12-8-7

C-11

ASCII
Standard
Card Code

0-9-5
12-8-7
12-8-2
0-8-2
11-8-2
12-11

AG91

APPENDIX D

STANDARD DATA TYPE FORMATS

This appendix describes the representation of Multics standard data types.
See nSubroutine Calling Sequences" in Section II of the MPM Subsystem Writers'
Guide for a discussion of data descriptors. In the following discussion let p
be the declared precision of an arithmetic datum. Let n be the declared length
of a string datum, and let k be the declared size of an area datum.

Any scaling factor declared for a fixed-point datum is not stored with the
datum. The scaling factor is applied to the v~lue of the datum when the value
participates in a computation or conversion.

Real Fixed-Point Binary Short (descriptor type 1)

A real, fixed-point, binary, unpacked datum of prec~s~on O<p<36 is
represented as a 2's complement, binary integer stored in a 36-bit word.

A real, fixed-point, binary, packed datum of precision O<p<36 is
represented as a 2's complement, binary integer stored in a string of p+1
bits.

Real Fixed-Point Binary Long (descriptor type 2)

A real, fixed-point, binary, unpacked datum of prec~s~on 35<p<72 is
represented as a 2 l s complement, binary integer stored in a pair of 36-bit
words the first of which has an even address.

A real, fixed-point, binary, packed datum of prec~s~on 35<p<72 is
represented as a 2's complement, binary integer stored in a string of p+1
bits.

Real Floating-Point Binary Short (descriptor type 3)

A real, floating-point, binary, unpacked datum ·of precision O<p<28 is
represented as a 2's complement, binary fraction m and a 2's complement,
binary integer exponent e stored in a 36-bit word of the form:

o 7 8
e m

3
5

The value 0 is represented by m=O and e=-128.
satisfies 1/2i:m:<1.

D-1

For all other values, m

AG91

A real, floating-point, binary, packed datum of precision O<p<28 is
represented as a 2's complement, binary fraction m and a 2's complement,
binary, integer exponent e stored in a string of p+9 bits.

o
e

7 8
I

> I
m

The value 0 is represented by m=O and e=-128.
satisfies 1/2ilml<1.

Real Floating-Point Binary Long (descriptor type 4)

For all other values, m

A real, floating-point, binary, unpacked datum of precision 27<p<64 is
represented as a 2's complement, binary fraction m and a 2's complement,
binary, integer exponent e stored in a pair of 36-bit words the first of
that has an even address.

o 7 8
e m

7
1

The value 0 is represented by m=O and e=-128.
satisfies 1/2ilml<1.

For all other values, m

A real, floating-point, binary, packed datum of precision 27<p<64 is
represented as a 2's complement, binary fraction m and a 2's complement,
binary, integer exponent e stored in a string of p+9 bits.

o 7 8
e m

The value 0 is represented as m=O and e=-128.
satisfies 1/2ilml<1.

Complex Fixed-Point Binary Short (descriptor type 5)

For all other values, m

A complex, fixed-point, binary, unpacked datum of prec1S1on O<p<36 is
represented as a pair of 2's complement, binary integers stored in a pair
of 36-bit words the first of which has an even address. The first integer
is the real part of the complex value and the second integer is the
imaginary part of the complex value.

A complex, fixed-point, binary, packed datum of precision O<p<36 is
represented as a pair 2's complement, binary integers stored in a string of
2(p+1) bits. The first p+l bits contain the integer representation of the
real part and the second p+l bits contain the integer representation of the
imaginary part.

Complex Fixed-Point Binary Long (descriptor type 6)

·A complex, fixed-point, binary, unpacked datum
represented as a pair of 2's complement,
consecutive 36-bit words the first of whi h has
two words contain the integer representat on of
two words contain the integer representat en of

D-2

of precision 35<p<72 is
binary integers stored in 4
an even address. The first
the real part and the last
the imaginary part.

AG91

A complex, fixed-point, binary, packed datum of precision 35<p<72 is
represented as a pair of 2's complement, binary integers stored in a string
of 2(p+1) bits. The first p+1 bits contain the integer representation of
the real part and the last p+1 bits contain the integer representation of
the imaginary part.

Complex Floating-Point Binary Short (descriptor type 7)

A complex, floating-point, binary, unpacked datum of precision 0<p<28 is
represented as a pair of real, floating-point, binary, unpacked data stored
in two 36-bit words the first of which has an even address. The first word
contains the real part of the complex value and the second word contains
the imaginary part of the complex value.

A complex, floating-point, binary, packed datum of precision 0<p<28 is
represented as a pair of real, floating-point, binary, packed data stored
in a string of 2(p+9) bits. The first p+9 bits contain the real part of
the complex value and the last p+9 bits contain the imaginary part of the
complex value.

Complex Floating-Point Binary Long (descriptor type 8)

A complex, floating-point, binary, unpacked datum of precision 27<p<64 is
represented as a pair of real, floating-point, binary, unpacked data stored
in 4 consecutive 36-bit words the first of which has an even address. The
first two words contain the real part of the complex value and the last two
words contain the imaginary part of the complex value.

A complex, floating-point,
represented as a pair of
in 2(p+9) bits. The first
value and the last p+9
value.

binary, packed datum of precision 27<p<64 is
real, floating-point, binary, packed data stored
p+9 bits contain the real part of the complex
bits contain the imaginary part of the complex

Real Fixed-Point Decimal (descriptor type 9)

A real, fixed-point, decimal datum (packed or unpacked) of precision p
(where 0<p~59) is represented as a signed, decimal integer stored as a
string of p+1 characters. The leftmost character is either a plus C+) or a
minus(-), and all other characters are from the set "0123456789".

An unpacked, decimal· datum is aligned on a word boundary and occupies an
integral number of words, the last of which can contain unused bytes.

d1 d2 dp

D-3 AG91

Real Floating-Point Decimal (descriptor type 10)

A real, floating-point, decimal datum (packed or unpacked) of prec1s1on p
(where 0<PS59) is represented as a signed, decimal integer m and a 2's
complement, binary, integer exponent e stored as a string of characters of
the form:

Is d 1 d2 I ••• dp I

~----------VT--~------~ m

I 0 I
~1--"'T~--'1

e

The exponent e is right justified within the last 9-bit character and the
unused bit is zero. The value 0 is represented by m=o and e=+127.

An unpacked, decimal datum is aligned on a word boundary and occupies an
integral number of words, some bytes of which can be unused.

Complex Fixed-Point Decimal (descriptor type 11)

A complex, fixed-point, decimal datum (packed or unpacked) of prec1s10n p
is represented as a pair of real, fixed point, packed, decimal data of
precision p. The first represents the real part of the complex value, and
the second represents the imaginary part of the complex value.

An unpacked, complex, decimal datum is aligned on a word boundary and
occupies an integral number of bytes, some of which can be unused.

Complex Floating-Point Decimal (descriptor type 12)

A complex, floating-point, decimal datum (packed or unpacked) of prec1s10n
p is represented by a pair of real, floating-point, packed, decimal data of
precision p. The first represents the real part of the complex value and
the last represents the imaginary part of the complex value.

An unpacked, complex, decimal datum is aligned on a word boundary and
occupies an integral number of bytes, some of which can be unused.

Pointer (descriptor type 13)

An unpacked pOinter datum is represented by a ring number r, a segment
number s, a word offset w, and a bit offset b, stored in a pair of 36-bit
words the first of which has an even address.

Q
I
1

A packed
w, and a

Q
b

1 1 2 2 2 3 3 3 5 5 5 5 6 6
2 3 '1 8 Q

I S I r 1 1

pointer datum
bit offset

5 Q
s

1 1
'1 8

b,

1 9 Q 5 6 3 4 Q '1 2 3
I 43 w 0 b I
I I

is represented by a segment number
stored as a string of 36-bits.

w

3
5

D-4

6 6 7
5 Q 1

0

s, a word offset

AG91

Offset (descriptor type 14)

An offset datum (always unpacked) is represented by a word offset w, and a
bit offset b, stored in a single 36-bit word.

a
w

1 1
7 8

a

2 2
a 1

Label (descriptor type 15)

2
6

b

3
5

A label datum (always unpacked) is represented by a pair of unpacked
pOinters. The first pointer identifies a statement within a procedure and
the second pOinter identifies a stack frame of an activation of the block
immediately containing the statement identified by the first pointer.

Entry (descriptor type 16)

An entry datum (always unpacked) is represented by a pair of unpacked
pointers. The first pointer identifies an entry to a procedure and the
second identifies a stack frame of an activation of the block immediately
containing the procedure whose entry is identified by the first pointer.
If the first pointer identifies an entry to an external procedure, the
second pOinter is null.

Structure (descriptor type 17)

A structure is an ordered sequence of scalar data. A packed structure
contains only packed data, whereas an unpacked structure contains either
packed or unpacked data or both.

A structure is aligned on a storage boundary that is the most stringent
boundary required by any of its components.

An unpacked member of a structure is aligned on a word or double word
boundary depending on its data type and occupies an integral number of
words.

A packed member of a structure is aligned on the first unused bit following
the previous member, except that up to 8 bits can be unused in order to
ensure that decimal arithmetic or non varying string datum is aligned on a
9-bit byte boundary.

An unpacked structure occupies an integral number of words.

Area (descriptor type 18)

An area datum (always unpacked) whose declared size is k occupies k words
of storage, the first of which has an even address. The maximum space
available for allocations within the area occupies k minus 24 words. The
number of words required for cards allocations is 2+ (2**m) where m is the
event power of 2 that exceeds the size of the items being allocated.

D-5 AG91

Bit-String (descriptor type 19)

A bit string (packed or unpacked) whose length is n occupies n consecutive
bits. The leftmost is bit 1 and the rightmost is bit n. An unpacked bit
string is aligned on a word boundary and occupies an integral number of
words. Some bits of the last word can be unused.

Varying Bit-String (descriptor type 20)

A varying bit string (always unpacked) whose maximum length is n is
represented by a real, fixed-point, binary short, aligned integer followed
by a nonvarying bit string of length n.

m bits

I~I
I I

I m I
I
I
\,

n bits

I

J

The length of the current value is m. A varying bit string is aligned on a
word boundary and occupies an integral number of words, the last of which
can contain unused bits.

Character String (descriptor type 21)

A character string (packed or . unpacked) whose length is n occupies n
consecutive 9-bit bytes. Each byte contains a single 7-bit ASCII character
right justified within the byte. The two unused bits must be zero.

An unpacked character string is aligned on a word boundary and occupies an
integral number of words, the last of which can contain unused bytes.

Varying Character String (descriptor type 22)

A varying character string (always unpacked) whose maximum length is n is
represented by a real, fixed-point, binary, short, unaligned integer
followed by a nonvarying character string of length n.

m characters

r------A
----"""

I I
I I

1m I I I
I I

1\~ ____ ~y~ __ ---J)

n characters

The length of the current value is m.

A varying character string is aligned on a word boundary and occupies an
integral number of words the last of which can contain unused bytes.

D-6 AG91

File (descriptor type 23)

A file datum (packed or unpacked) is represented by a pair of unpacked
pointers, the second of which points to a file state block and the first of
which points to a bit string. Neither the form of the file state block nor
the form of the bit string are defined as Multics standards.

Arrays

An array is an n-dimensional, ordered collection of scalars or structures,
all of which have identical attributes. The elements of an array are stored in
row major orqer. (When accessed sequentially the rightmost subscript varies
most rapidly).

Summary of Data Descriptor Types

1 real fixed-point binary short
2 real fixed-point binary long
3 real floating-point binary short
4 real floating-point binary long
5 complex fixed-point binary short
6 complex fixed-point binary long
7 complex floating-point binary short
8 complex floating-point binary long
9 real fixed-point decimal

10 real floating-point decimal
11 complex fixed-point decimal
12 complex floating-point decimal
13 pointer
14 offset
15 label
16 entry
17 structure
18 area
19 bit string
20 varying bit string
21 character string
22 varying character string
23 file

D-7 AG91

APPENDIX E

LIST OF NAMES WITH SPECIAL MEANINGS

The following names are reserved for special purposes within Multics. The
user should not use them with a different meaning.

RESERVED I/O SWITCH NAMES

By convention, the following I/O switch" names are reserved~
maintained by the standard environment are:

Those

user_input

user_output

is the switch attached to the user's terminal or
absentee input and output segments.

is the switch attached to user_i/o
expressly to read calls.

is the switch attached to user_i/o
expressly to write calls.

and

and

devoted

devoted

is the switch attached to user_i/o and devoted
expressly to write calls under error conditions.

Those maintained by system commands or subroutines are:

filenn

graphic_input

is the switch attached by the exec_com command using
the attach command line where N is a unique sequence
number assigned by the exec_com command. The switch
user_input is attached to this switch through the
syn_ I/O module.

is the switch attached by the file_output command.
The switch user_output is attached to this switch
through the syn_ I/O module.

is the switch attached by the FORTRAN I/O system
where nn is the file reference number.

is the switch used for graphics input.

is the switch used for graphics output.

E-1 AG91

RESERVED SEGMENT NAMES

By convention, the following segment names are reserved. Those maintained
in the home directory are:

Person_id.breaks

is the exec com invoked at the beginning of a process
in the standard environment.

is the break segment used by the debug
(described in the MPM Commands).

command

Person_id.con_msgs is the segment used by the message facility (see the
send_message command in the MPM Commands).

Person_id.memo

Person_id.motd

Person_id.profile

is the segment used by the mail command (described in
the MPM Commands).

is the segment used by the memo command (described in
the MPM Commands).

is the segment used by the
(described in the MPM Commands).

command

is the segment used by the abbrev command (described in
the MPM Commands).

Those maintained in the process directory are:

combined_linkage_N.jk is the user's linkage segment for ring number N
(1<=N<=7). jk is a two digit sequence number. This
segment also contains internal static storage.

kst

pds

pit

(Known Segment Table) is a Hardcore Ring
segment.

data

(Process Data Segment) is a Hardcore Ring data
segment.

is the user's Process Initialization Table. It
should only be referenced through the user_info_
subroutine (described in the MPM Subroutines).

is the user's automatic storage area for ring number
N (1<=N<=7).

is the free storage area used by system commands for
ring number N (1<=N<=7).

In general, users should not create segments whose names end in a trailing
underscore (_). These names are reserved for system subroutines and may cause
errors if they are in the user's search path. (See "Search Rules" in
Section IV.)

RESERVED SEGMENT NAME SUFFIXES

Suffixes are used as in the following example: when creating a PL/I source
program to be named xyz, the user would create a source language segment named
xyz.p11. The PL/I compiler, by convention, translates this segment, producing
the segment xyz.list, containing a printable listing, and the segment xyz,
containing the object program.

B-2 AG91

By convention, the following segment name suffixes are reserved. The
language translator source segment suffixes are:

Language Source Include
Translator Segment Files

PL/I compiler p11 incl.p11

FORTRAN compiler fortran incl. fortran

ALM assembler alm incl.alm

BASIC compiler basic

COBOL compiler cobol

The listing s~gment suffix is:

list is the suffix on printed output listing segments produced by
compilers, the assembler, and the binder.

Other special suffixes are:

absin is the input segment suffix for an absentee process.

absout is the default output segment suffix for an absentee process.

apl is the suffix on the segment containing a saved workspace from
the apl command.

archive is the suffix on the segment created by the archive command.

bind is the suffix on the input control segment for the binder.

ec is the suffix on the input segment to the exec_com command.

gcos is the suffix on a segment that is in GCOS standard system
format.

info is the suffix on a segment, in)documentation)info_segments, f:;:,
use with the help command.

mbx is the suffix on any mailbox segment that the user wants to
create.

ms

qedx

runoff

runout

is the suffix on an administrative ring message segment.

is the suffix concatenated by the qedx command to the entryname
of a segment containing qedx instructions.

is the input segment suffix to the runoff command.

is the output segment suffix from the runoff command.

E-3 AG9 ;

RESERVED OBJECT SEGMENT ENTRY POINT

By convention, the following entry point definition ~n object segments is
reserved.

is the entry point definition which provides the
address of the symbol table produced by the pl1 or
fortran commands.

Since this is a reserved entry point, no user-created program can use this
name. A statement of the form:

symbol_table: procedure .••

is illegal if it is the external procedure block.

E-4 AG91

APPENDIX F

STANDARD MAGNETIC TAPE FORMAT

This appendix describes the standard physical format used on 7-track and
9-track magnetic tapes on Multics. Tapes of this form may be written and read
by the tape_mult_ 1/0 module (described in the MPM Subroutines). Any magnetic
tape not written in the standard format described here is not a Multics standard
tape.

STANDARD TAPE FORMAT

The first record on the tape following the beginning of tape (BOT) mark is
the tape label record. Following the tape record is an end of file (EOF) mark.
Subsequent reels of a multireel sequence also have a tape label followed by EOF.
(An EOF mark is the standard sequence of bits on a tape that is recognized as an
EOF by the hardware.)

Following the tape label and its associated EOF are the data records. An
EOF is written after every 128 data records with the objective of increasing the
reliability and efficiency of reading and positioning within a logical tape.
Records that are repeated because of transmission, parity, or other data alerts,
are not included in the count of 128 records. The first record following the
EOF has a physical record count of 0 mod 128.

An end of reel (EOR) sequence is written at the end of recorded data. An
EOR sequence is:

EOF mark
EOR record
EOF mark
EOF mark

STANDARD RECORD FORMAT

Each physical record consists of a 1024-word. (36864-bit) data space
enclosed by an 8-word header and an 8-word trailer. The total record length is
then 1040 words (37440 bits). The header and trailer are each 288 bits. This
physical record requires 4680 frames on 9-track tape and 6240 frames on 7-track
tape. This is appr~imately 5.85 inches on 9-track tape at 800 bpi and 7.8
inches on 7-track tape at 800 bpi, not including interrecord gaps. (Record
gaps on 9-track tapes are approximately 0.6 inches and on 7-track tapes are
approximately 0.75 inches, at 800 bpi.)

For 1600 bpi 9-track tape, the record length is approximately 2.925 inches
(with an interrecord gap of approximately 0.5 inches).

F-1 AG91

PHYSICAL RECORD HEADER

The following is the format of the physical record header:

Word 0:

Words 1 and 2:

Word 3:

Word 4:

Word 5:

Constant with octal representation 670314355245.

Multics standard unique identifier (70 bits, left
justified). Each r~cord has ~ different unique identifier.

Bits 0-17: the number of this physical record in this
physical file, beginning with record O.

Bits 18-35: the number of this physical file on this
physical reel, beginning with file O.

Bits 0-17: the number of data bits in the data space, not
including padding.

Bits 18-35: the total number of bits in the data space.
(This should be a constant equal to,36864.)

Flags indicating the type of' record. Bits are assigned
considering the leftmost bit to be bit 0 and the rightmost
bit to be bit 35. Word 5 also contains a count of the
rewrite attempt, if any.

Meaning if Bit is 1 Bit

o This is an administrative record
(one of bits 1 through 13 is 1) .

This is a label record.

2 This is an end of reel (EaR) record.

3-13 Reserved.

14 One or more of bits 15-26 are set.

15 This record is a rewritten record.

16 This record contains padding.

17 This record was written following a
hardware end of tape (EaT) condition.

18 This record was written synchronously;
that is control did not return to the
caller until the record was written
out.

19 The logical tape continues on another
reel (defined only for an end of reel
record).

20-26 Reserved.

27-35 If bits 14 and 15 are 1, this quantity
indicates the number of the attempt to
rewrite this record. If bit 15 is 0,
this quantity must be O.

F-2 AG91

Word 6:

Word 7:

Contains the checksum of the header and trailer excluding
word 6; i.e., excluding the checksum word. (See Appendix G,
"Standard Checksum," for a description of standard checksum
computation.)

Constant with octal representation 512556146073.

Physical Record Trailer

The following is the format of the trailer:

Word 0:

Words 1 and 2:

Word 3:

Word 4:

Word 5:

Word 6:

Constant with octal representation 107463422532.

Standard Multics unique identifier (duplicate of header).

Total cumulative number of data bits for this logical tape
(not including padding and administrative records).

Padding bit pattern (described below).

Bits 0-11: reel sequence number
beginning with reel O.

(multireel number),

Bits 12-35: physical file number, beginning with physical
file 0 of reel O.

The number of the physical record for this logical tape,
beginning with record O.

Word 7: Constant with octal representation· 265221631704.

NOTE: The octal constants listed above were chosen to form elements of a
single-error-correcting code whether read as 8-bit tape characters
(9-track tape) or as 6-bit tape characters (7-track tape).

ADMINISTRATIVE RECORDS

The standard tape format includes two types of administrative records: a
tape label record; or, an EaR record.

The administrative records are of standard length:
1024-word data area, and 8-word trailer.

8-word header,

The tape label record is written in the standard record format.
space of the tape label record contains:

The data

Words 0-7:

Words 8-15:

remaining:

32-character ASCII installation code.
installation that labelled the tape.

This identifies the

32-character ASCII reel
identification by which
tape.

identification. This is the reel
the· operator stores and retrieves the

a padding pattern.

F-3 AG91

The end of reel record contains only padding bits in its data space. The
standard record header of the EOR record contains the information that
identifies it as an EOR record (word 5, bits 0 and 2 are 1).

DENSITY AND PARITY

Both 9-track and 7-track standard tapes are recorded in binary mode with
odd ones having lateral parity. Standard densities are 800 frames per inch
(bpi) (recorded in NRZI mode) and 1600 bpi (recorded in PE mode).

DATA PADDING

The padding bit pattern is used to fill administrative records and the last
data record of a reel sequence.

WRITE ERROR RECOVERY

Multics standard tape error recovery procedures differ from the past
standard technique in that no attempt is made to backspace the tape on write
errors. If a data alert occurs while writing a record, the record is rewritten.
If an error occurs while rewriting the record, that record is again rewritten.
Up to 64 attempts can be made to write the record. No backspace record
operation is performed.

The above write error recovery procedure is applied to both administrative
records and data records.

COMPATIBILITY CONSIDERATION

Software shall be capable of reading Multics Standard tapes that are
written with records with less than 1024 words in their data space. In
particular, a previous Hultics standard tape format specified a 256-word
(9216-bit) data space in a tape record.

F-4 AG91

APPENDIX G

STANDARD CHECKSUM

The checksum described in this appendix is the standard Multics technique
for computing a full word checksum on the Honeywell 6180 computer.

ALGORITHM

Checksums are computed using the "awca" instruction followed by an "aIr 1"
instruction. Upon completion of checksum computation, two "awca O,dl"
instructions are executed to include all carries in the checksum.

A typical checksum computation scheme follows:

ldi
sti
Ida
eax1

loop: ldi
awca
sti

aIr
eax1
cmpx1
tnc

ldi
awca
awca

sta

:0004000,dl
indics
O,dl
o

indics
word,1
indics

1
1 , 1
size,du
loop

indics
O,dl
O,dl

cksum

inhibit overflow fault
save indicators
initialize "a" to zero
count locations in x1

restore indicators
add with carry to checksum
save indicators (they get
clobbered by cmpx1)
rotate "a" left
count 1 location and
check for comp~etion
loop

restore indicators
add in carry, if any
in case carry generated by
last instruction
save the checksum

G-1 AG91

INDEX

A

absentee 1-10, 6-2

ACL
see access control

active function 1-10, 3-16ff
argument list 3-17
error messages

access control 1-10, 6-1
access control list (ACL)

6-1

see condition, list of
1-4, 1-10, writing an active function 4-5ff

structure 6-4
matching conventions 6-5ff
maintenance 6-6ff
special entries 6-7ff

access identifier 1-10, 6-2
access isolation mechanism (AIM)

1-4, 1-10, 6-1
access class 1-10, 6-1
AIM access rules 6-10ff
authorization 1-11, 6-10ff

default 6-13
person maximum 6-13
process maximum 6-13
project maximum 6-13
user maximum 6-13

category set 6-10ff
maintenance 6-15ff

general restrictions 6-16ff
mailboxes 6-16
special situations 6-15

sensitivity level 6-9ff
assigning 6-10
system_low 6-9, 6-16

access modes 1-10, 6-1, 6-3ff
administrative access control

see access control, nondiscretionary
discretionary access control 6-1ff
effective access 6-1
extended access 6-3ff
initial ACL 1-14, 6-8

maintenance 6-9
intraprocess access control 6-1,
6-17ff

nondiscretionary access control 6-1,
6-9ff

process identifier 6-5ff
ring structure

see rings

accounting 4-12
obtaining resources 1-5, 1-8
storage quota 1-5, 1-8, 6-14

i-1

active_function_error (condition) 7-21

address space 4-7, 4-10ff
see also linking

administrative access control
see access control, nondiscretionary

administrators
project administrator 1-17, 6-9,

6-13
system administrator 1-19, 6-9
system security administrator 6-9,

6-13

AIM
see access control

ala"rm
see clock

ALM 1-7, 1-10, 4-1ff

alrm (condition) 7-22

any_other (condition) 7-12

APL 1-7, 4-1

archive 1-11
component "1-12

area (condition) 7-22

argument list
see command environment

ASCII
see character set

assembly language 1-7, 1-10, 4-1ff

AG91

asterisk 3-4, 6-5ff

attach operation
see I/O, operations

author
see segment, attributes
see directory, attributes

authorization
see access control, access isolation

mechanism

automatic storage 1-3, 1-8

B

backup 1-9, 1-11, 6-8, 8-1ff
dumping 8-1ff

complete 8-3
consolidated 8-2
incremental 8-2

reloading 8-3ff

bad_outward_call (condition) 7-23

BASIC 1-7, 4-1

binding 1-11, 3-11, 4-9

bit count 1-11
see multisegment file
see segment, attributes

bit count author
see segment, attributes

bound segment 1-11, 3-11, 4-9

branch 1-11, 2-1

breakpoint 4-4

checksum G-1

cleanup 7-41

clock
process CPU usage 4-12ff
real time 4-12ff

close operation
see I/O, operations

closed subsystem 1-11
see also process overseer

COBOL 1-7, 4-1

combined linkage region (CLR) 4-12

command environment 3-13ff, 4-5
active function 3-16ff, 4-5ff
command 1-12, 3-13
command level 1-12, 3-13
command line 3-13, 3-16, 3-18
command processor 1-8, 1-12, 3-13ff,

3-16, 4-5ff
concatenation 3-16, 3-18
control argument 1-12, 3-13ff
iteration 3-15ff
listener 3-13
ready message 1-18, 3-13
validation level

see rings
writing a command 4-4ff

command_error (condition) 7-23

command_Query_error (condition) 7-24

command_question (condition) 7-24

component 1-12
of access identifier 1-10, 6-2
of archive 1-12
of .bound segment 1-11, 3-11, 4-9
of entryname 3-1, 3-4, 3-6

condition 7-10ff
bulk I/O handling 7-14

see I/O list of 7-18ff
machine 7-15
mechanism 7-10ff
signalling 7-14

C

canonicalization 1-11, 3-19ff

character set
ASCII 3-22, A-1ff
ASCII chart A-3
EBCDIC chart C-6ff
escape 3-22ff
reserved 3-15
see terminals

control argument 1-12

convention
escape 3-22ff, B-1ff
equal 1-13, 3-6ff
naming 3-1, 3-12ff, 4-2, 5-4
star 1-19, 3-4
typing 3-19ff

conversion (condition) 7-26

copying
see backup

i-2 AG91

cput (condition) 7-26

cross_ring_transfer (condition) 7-26

daemon 1-12
access for 6-7ff
backup

D

see backup
offline I/O 1-13ff

data types
descriptors D-1ff
formats D-1ff

debugging 4-4

default error handling
see condition, handling

default working directory
see directory

definition section 4-3, 4-7

derail (condition) 7-27

descriptors
see data types

detach operation
see liD, operations

directory 1-12
access control

access class 2-3
ACL 2-3
ini tial ACL 2-J-l
ring brackets 2-5

attributes 2-3ff
author 2-3
date-time 2-4
length 2-4
names 2-5
quota 2-5
safety switch 2-5

default working 1-12
home 1-12
initial working 1-12, 1-14
process 1-17
referencing 4-8
upgraded 6-14

see also access control, access
isolation mechanism, access class

working 1-13, 4-8

discretionary access control
see access control

dump
see backup

dynamic linking 1-13, 4-7, 4-10ff

E

EBCDIC
see character set

endfile (condition) 7-27

endpage (condition) 7-27

entry. 1-13, 2-1

~ntry point 1-13
name 1-13, 3-12

entryname 1-13, 3-1
component 3~1, 3-4, 3-6

equal sign 3-6

error (condition) 7-28

error handling
see condition, handling

error messages
see status codes

error_output liD switch 5-8

escape conventions' 3-22ff, B-1 ff

event channel
see interprocess communication

exec_com 1-13, 6-16

external reference 3-11, 4-7ff

external symbol 3-12, 7-2

F

fault 1-13, 7-41ff
see condition, list of

fault_tag_l, fault_tag_3 (conditions)
7-28

file
definition of 1-14
see multisegment file

finish (condition) 7-28

fixedoverflow (condition) 7-28

i-3 AG91

FORTRAN 1-1, 4-1

frame (paging) 1-3, 1-15

G

gate 1-5, 1-14, 6-18, 6-20

gate_error (condition) 1-29

greater-than character 2-1, 3-2, 3-4,

1/0 (cont)
operations 5-6ff

attach 1-11, 5-2, 5-4
close 5-3
detach 1-12, 5-3
open 5-3, 5-5

programming language facilities 5-9
switch 1-14, 1-19, 5-1ff

names 3-12
standard 5-8

synonym attachments 5-5, 5-8
terminal 1/0 5-14

illegal_modifier (condition) 1-29

3-6, 5-4 illegal_opcode (condition) 1-29

H

handling
see condition

hard core 1-14

hardware faults
see condition, list of

help files 1-14

home directory
see directory

I

1/0
bulk 5-16ff

cards 1-15, 5-11, C-1ff
control card format C-lff
conversion modes C-4
punch codes C-5

offline 1-13, 5-16
control block 5-3
file 1/0

closing 5-11
opening 5-11, 5-13
position designators 5-14, 5-15
types 5-9ff, 5-12

indexed 5-10ff
sequential 5-10
unstructured 5-10

interrupted operations 5-9
module 1-14, 5-2, 5-4, 5-7
opening modes 5-5ff

(cont)

illegal_procedure (condition) 7-29

illegal_return (condition) 1-30

info segments 1-14

initializer 1-14

initiate 1-14, 3-11, 3-14, 4-1ff,
4-10, 5-4

installation maintained library 1-14

instance tag 6-2

internal static offset table (ISOT)
4-11ff

internal static section 4-12

interprocess communication 1-15, 4-13,
6-12

AIM restrictions 6-12, 6-15
extended access 6-3ff
see also interuser communication

interrupt
abort execution

quit (condition) 1-11, 5-9, 7-36
reinstate

program_interrupt (condition) 7-36

intersegment reference 1-13, 4-7,
4-10ff

interuser communication
AIM restrictions 6-16
extended access 6-3ff
mailbox 6-16
see also interprocess communication

io_error (condition) 7-30

ioa_error (condition) 7-31

iocb
see 1/0, control block

i-4 AG91

ISOT
see internal static offset
table (ISOT)

K

key (condition) 7-31

L

languages
command language

see command environment
programming languages 1-6ff, 1-10,
4-1ff

length of segment
see segment, attributes

less-than character 3-2, 5-4

libraries 4-8, 8-1
directory hierarchy 2-8ff
search rules 4-8ff

limited service system 1-15
see also process overseer

link
storage system 1-15, 2-1

attributes
author 2-3
date-time 2-4
names 2-5

interprocedure 1-13, 1-15, 4-7
pair 1-15
snapping 1-19, 4-7
unsnapping 3-11

linkage_error (condition) 7-31

linkage offset table (LOT) 4-11ff

linkage section 1-15, 4-4, 4-7

linking
dynamic 1-13, 4-7, 4-10ff

listener 1-15, 3-13

lockup (condition) 7-32

·login 6-13ff

LOT
see li~kage offset table (LOT)

machine conditions
see conditions

M

magnetic tape F-1ff

mailbox 1-15
AIM restrictions
extended access

6-16
6-3ff

making segment known 1-15, 3-11, 3-14,
4-7, 4-10
see ·also initiate

making segment unknown 3=11
see also terminate

memory units 1-15

mcc (MCC, Multics card code) 1-15

message_segment_error (condition) 7-32

messages
error

see status codes
ready 1-18, 3-13
segments

see interprocess communication

mme1, mme2, mme3, mme4 (conditions)
7-32

mode
see access control, access modes

modes operation
see 1/0, operations

multiple names
see names, alternate

multisegment file 1-16, 2-6
access control 2-6
bit count 2-3, 2-6
MSF indicator 2-5ff
names 2-5ff

N

name (condition) 7-32

names
alternate 1-10
equal 1-13, 3-6ff
external symbol 3-12

(cont)

i-5 AG9 1

names (cont)
naming conventions 3-1, 3-12ff, 4-2,

5-4
primary 1-17
reference 1-18, 3-10, 3-14, 4-7

4-10
reserved 3-12ff, E-1ff
star 1-19, 3-4ff
unique 1-13, 1-18, 1-20

new_proc 6-15

no_execute_permission (condition) 7-33

no_read_permission (condition) 7-33

no_write_permission (condition) 7-33

nonlocal transfer 7-41

not_in_read_bracket (condition) 7-34

not_in_write_bracket (condition) 7-34

°
object map 4-3ff

object segment 1-16, 4-2ff
creation 4-3
format 4-3ff
symbol table 4-3

on unit 7-10ff

op_not_complete (condition)

open operations
see liD, operation

overflow (condition) 7-35

7-34

7-35

.parity (condition) 7-35

pathname 1-16, 3-1
absolute 1-16, ·2-1, 3-2
length of 3-2
relative 1-16, 3-2

per-process data
linkage section 1-15, 4-4, 4-7
see stack

percent sign 3-6

Person_id 1-16, 6-2, 6-5

PDT
see project, definition table

PIT
see process initialization
table (PIT)

PL/I 1-6, 4-1ff

see project, master file

pointer 1-17

printing
see liD, bulk, offline

privileges
see access control, nondiscretionary

procedure segment
see object segment

process 1-17
access privileges 6-1ff, 6-5ff

see also access control
creation 1-4, 6-2, 6-13
directory 1-17

process initialization table (PIT) 1-17

process overseer 1-17
standard service system 1-6, 1-19
limited service system 1-6
closed subsystem 1-6, 1-11

program_interrupt (condition) 7-36

project 1-17
administrator 1-17, 6-9, 6-13
definition table (PDT) 1-17

P master file (PMF) 1-17

page_fault_error (condition) 7-35

paging
frame
fault

1-3, 1-16
1-3, 1-15
1-3

1-6

Project_id 1-17, 6-2, 6-5

protection rings
see rings

punched cards
see liD, bulk

AG91

pure procedure 1-14, 1-17
see also object segment

qedx 1-7

question mark 3-4

quit request 1-17

Q

quit (~ondition) 1-17, 5-9, 7-36

quit signal 1-17, 5-9, 7-36

Quota
storage 1-5, 1-8, 6-14

Quoted strings 3-15

R

ready messages 1-18, 3-13

record 1-18
see also page

record (condition) 7-36

record_Quota_overflow (condition) 7~37

recursion 1-18, 4-1, 4-12

reference name 1-18, 3-10, 3-14, 4-7,
4-10

reload
see backup

retrieval 1-18, 8-1ff
see also backup

rings 1-5, 1-18, 6-1, 6-17ff, 7-14
access control (ring brackets) 1-18,

6-17ff
default values 6-21
directory 6-20
segment 6-18ff

gate 1-5, 1-14, 6-18, 6-20
validation level 6-18, 6-20

root 1-18, 2-1, 3-2

runoff 1-7

i-7

s

safety switch
see segment, attributes
see directory, attributes

scheduler - 1-20

search rules 1-18, 3-11, 3-14, 4-8ff

seg_fault_error (condition) 7-37

segdef 3-12, 7-2

segment 1-2, 1-18, 2-1
access control

access class 2-3
ACL 2-3
ring bra~kets 2-5

attributes 2-3ff
aut-hor 2-3
bit count 2-3
bit count author 2-3
date-time 2-4
length 2-4
maximum length 2-5
names 2-5
safety switch 2-5

wired 1-20

semicolon 3-13ff

service processes
see daemon

7punch 5-17

shriek name
see names, unique

simfault_nnnnnn (condition) 7-37

size (condition) 7-37

source map
see object segment

source segment 4-2ff
debugging 4-4

stack 1-19, 4-1, 4-4, 4-11
frame 4-11ff
frame poin~er 4-11ff
header 4-11ff

standard checksum G-1

star convention 1-19, 3-4ff

start_up.ec 1-19

AG91

status codes
definition 1-13, 1-19
list of 7-2ff

110 7-5
other 6-16, 7-7
storage system 7-3

storage
automatic 1-3, 1-8

storage (condition) 7-38

storage system 1-2ff, 1-13, 2-1,
2-6ff, 3-14, 4-1, 8-1ff

storage quota 1-5, 1-8, 6-14

store (condition) 7-38

stringrange (condition) 7-38

stringsize (condition) 7-39

subscriptrange (condition) 7-39

subsystem 1-19, 3-13, 6-1, 6-17, 6-20

suffix 1-19
see also component

switch
see 110

symbol section 4-4

symbol table 4-3ff

symbol offset 3-12

synonym
see 110, synonym attachment

terminate 1-20, 3-11

text section 4-3

time
see clock

timer_manager_err (condition) 7-39

traffic controller 1-20

translators 1-6ff, 1-20, 4-2ff

transmit (condition) 7-40

trap 4-7

truncation (condition) 7-40

typing conventions
canonicalization
erase character
escape 3-22ff,
kill character

3-19ff
3-19ff

3-21ff
B-1ff
3-21ff

U

unclaimed signal 7-12

undefined file (condition) 7-40

underflow (condition) 7-40

unique name
see name

unsnapped link 3-11

SysDaemon unusual occurrences
see daemon see conditions

see status codes
system administrator 1-19, 6-9

system security administrator 6-9
6-13

T

tape
standard format F-1ff

temporary storage
see stack, frame

terminals 1-8
characteristics 1-20, B-1ff
escape conventions 3-22ff, B-1ff
liD 5-14

unwinder_error (condition) 7-41

User_id 1-20

user_ilo 1/0 switch 5-8

user_input liD switch 5-8

user_output 110 switch 5-8

v

validation level 6-18
directory 6-20
segment 6-18ff

i-B AG91

virtual memory 1-3, 4-1

w

wakeup 4-12ff, 6-12
see clocks
see also interprocess communication

who table 1-20

word 1-20

working directory
see directory

z

zerodivide (condition) 7-41

i-9 AG91

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE MULTICS PROGRAMMERS' MANUAL
REFERENCE GUIDE

ERRORS !N PUBUCAT!ON

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER No·1 AG91, Rev. 1

DATED IDECEMBER 19751

r\ Your comments will be promptly investigated by appropriate technical personnel and action will be taken 0 lI" as required. If you require a written reply, check here and furnish complete mailing address below.

FROM: NAME __ __
DATE~--------------

TITLE __ ___

COMPANY __ ____

ADDRE~ __ __

ATTENTION: PUBLICATIONS, MS 486

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

Honeywell

FIRST CLASS
PERMIT NO. 39531
WALTHAM,MA
02154

14841
i .5176
Printed ;n U.S.A.

The Other Computer Company:

Hone)'"'ell

HONEYWELL INFORMATION SYSTEMS

in the U.S.A.: 200 Smith Street, MS 061, Wai tham, Massachusetts 02154
in Canada: 2025 Sheppard Avenue East; VViiiowu(jie: Ontario AG91, Rev. '1

