

4. Relinquish disk storage used by segments not in the
hierarchy, i.e., the paged supervisor segments not in the
hierarchy.

The responsibility of emergency shutdown is to try to
accomplish as much of the above as is possible, in an environment
deficient in an unknown way.

Shutdown is somewhat akin to initialization in the sense
that the environment in which it runs is gradually depleted as
opposed to the continually growing environment of initialization.

Thus, shutdown consists primarily of:

1. Flushing main memory--several times.

2. Deactivating any segments that can be deactivated.

3. Updating the branches of any segments that cannot be
deactivated (i.e., entry-hold segments, like those
supervisor segments in the hierarchy).

4. Deleting the hardcore nonhierarchy segments via the AST
traversal mechanism of initialization.

5. Flushing the paging device.

6. Updating the FSDCT, perhaps several times.

The flowchart, Figure 4-1, shows the sequence of these
operations for both normal and emergency shutdown. The module
(or entry point) responsible for performing each function is
given at the bottom of each box.

4-2 AN70

NORMAL
SHUTDOWN

•
DESTROY ALL
PROCESSES EXCEPT
INITIALIZER AND
IDLE PROCESSES

tc shutdovvn

DEACTIVATE ALL
SEGMENTS THAT CAN
BE DEACTIVATED

shutdown

DIS,cIBLE
WAIT/NOTI FY

shutdown

FLUSH
MAIN MEMORY

pc$flush

UPDATE ALL
REMAINING ACTIVE
BRANCHES OF
ACTIVE SEGMENTS

shutdown

SWITCH TO
SHUTDOWN STACK

shutdown switch 1
FLUSH MAIN
MEMORY AGAIN

pc$flush I

1
FREE SUPERVISOR
DISK STORAGE

delete _ segs$hardcore' ~

FREE DISK STORAGE
OF INITIALIZER'S
DESCRIPTOR
SEGMENT

wired shutdown

FLUSH PAGING
DEVICE, TURN OFF
PAGING DEVICE

pc$pd _flush _all

FLUSH MAIN
MEMORY ONCE
MORE

pc$flush

UPDATE THE
FSDCT

p.c$fsout

RETURN TO
BOS

Figure 4-1.

EMERGENCY
SHUTDOWN

STOP TRAFFIC
CONTROL
WAIT/NOTIFY

emergency _ shutdown!

FIND A SUITABLE
PROCESS TO RUN IN

emergency _shutdown ~

CLEAR LOCKS

emergency _shutdown 1

RESET 10M AND
STORAGE SYSTEM
DIMS

iom manager$iom reset I
device _ control$time _out

'-----....

ShutdoHn

SWITCH TO
SHUTDOWN STACK

shutdown switch

UPDATE THE
FSDCT

pc$fsout

FLUSH
MAIN MEMORY

pc$flush

UPDATE THE
FSDCT

pc$fsout

UPDATE THE
PDMAP

pc$write _pdmap

AN70

NORMAL SHUTDOWN

Normal shutdown is performed by the procedure shutdown and
the programs it calls. ~fhen shutdown has finished its work, it
switches stacks to the segment shutdown_stack and invokes the
procedure wired_shutdown. Once in this procedure, no nonwired
paged hardcore segments are utilized. This procedure ultimately
returns to BOS via a call to pmut$bos.

Shutdown begins with a call to tc_shutdown. tc_shutdown
sets the flag tC_data$system_shutdown to 1. This flag changes
the Multics locking strategy to allow any process to lock any
lock, regardless of whether or not it is already locked. This
strategy is based upon the fact that only one process is running.
(This applies to only wait/notify type locks, such as directory
locks and the AST lock.) This flag also prohibits the depositing
of disk records (to be discussed) and modifies the behavior of
the utility program wire_stack and the teletype control package.

tc shutdown continues by calling deact_proc$destroy to
destroy all existing processes (save the initializer and idle
processes). This destruction is done via the normal process
destruction mechanism, which is not graceful. Graceful removal
of processes is the responsibility of the operator, before
shutdown is invoked. Only the initializer process is allowed to
perform a normal shutdown--this check is made at the very onset
of the program shutdown.

The next step of shutdown is to deactivate all segments that
can be deactivated. Not only does this force their pages out of
main memory, ensuring their consistency, but ensures that the
branches, including the file maps for these segments, are
consistent. The issue of pages on the paging device is left
aside for a moment. The existence of such pages does not affect
the information in the branches. This deactivation is done as a
loop over all of the regular (four sizes of page tables for
hierarchy segments) AST lists. The hardcore AST list will be
dealt with later. Supervisor segments that are in the hierarchy
are on the regular lists, not the hardcore list.

For each AST list, the list is traversed to find each active
segment with no inferiors active. If it is not entry-hold active
(supervisor segments will be entry_hold active, as will KSTs and
PDSs of other processes during an emergency shutdown, and the KST
and PDS of the initializer in all cases), it is deactivated.
After each segment is deactivated, an inner loop is made,
checking its parent, and its parent, and so on, to deactivate
them if they now have no inferiors active as the result of the
preceding deactivation. As this inner loop proceeds, a check is

4-4 AN70

made that the next ASTE to be inspected by the outer loop (trying
to find any ASTE with no active inferiors) was not the segment
being deactivated by the inner loop. The root is special-cased,
and not deactivated. Figure 4-2 shows this loop.

When the above loop is finished, the only segments left
active on the regular AST lists are those whose entry-hold-active
switch is on and their containing directories. The branches for
these segments are updated next. First, however, the switch
tc_data$wait_enable is set to 0, its value prior to the
initialization of traffic control. This disables the wait/notify
mechanism and reverts this mechanism to the more primitive
mechanism of initialization (see "Traffic Control and Ringslt in
Section I). Also, pc$flush is called to write out the contents
of main memory. This is done at this time to cause all pages in
main memory to have device addresses assigned at the time that
their branches are updated in the next sequence of calls. (This
check is somewhat redundant.)

The AST lists for hierarchy segments are now traversed once
more. The routine updateb, which updates branches from AST
entries, is called to update the branch of each active segment.
This assigns device addresses (redundantly) to all pages still in
main memory if they have none, and updates file maps and time
used/modified information in the branch. Quota accounting is
also updated at this time. Also at this time, the astep fields
in the branches of these segments are zeroed. This critical step
is the inverse of that performed by init_branches and ensures
that the first segment fault on any such segment during the next
bootload finds that the segment is not active and must activate
it. The salvager also performs this critical operation should
shutdown (or emergency shutdown) fail. If neither of these
measures succeeds, system failure is almost certain on the next
bootload.

Pages in main memory that are zero are not assigned device
addresses by page$pwrite, the primitive called by pc$flush.
Thus, pages of entry-hold-active segments in main memory that are
zero are assigned device addresses by updateb at the time their
branches are updated and later paging activity causes those pages
to be discovered to be zero and freed by normal paging activity.
Were such pages discovered to be zero by pc$flush, the following
problem would result. As this depositing was not noted in the
already-updated file map, an unprotected address (causing fatal
system failure) would be noted at the next bootload when such
pages were deleted via segment deletion. The prevention of this
effect is the point of disabling page-depositing during shutdown.

4-5 AN70

START ON
NEXT AST
LIST

Figure 4-2.

YES

E CHANGE THE
DEACTIVATE ~----f NEXT SEGMENT
THIS SEGMENT TO BE CONSID

ERED BY "X"

CONSIDER THE
PARENT OF
THIS SEGMENT

Deactivation Loop of Shutdown

4-6 AN10

When all these steps of shutdown are complete, the procedure
wired shutdown is called via the interface shutdown switch. The
latter interface abandons the current stack (which for a normal
shutdown is the PDS of the initializer process and for an
emergency shutdown is already shutdown_stack) and establishes a
stack frame at the base of the supervisor segment shutdown_stack.
The segment shutdown_stack is a segment consisting of zeroes; it
is loaded from the MST, but its AST entry is threaded out of the
AST lists by make_segs_paged (see "The Making Paged of Segments"
in Section II). Its PTWs are marked as "wired" but not in core.
shutdown_switch touches all of its pages, bringing them into main
memory permanently. A stack header is copied from the current
stack and a stack frame set up at the base of shutdown_stack.
All code from this point on takes no page faults--all paged,
nonhierarchy supervisor segments are deleted. Finally,
shutdown-switch invokes the procedure that it was called to
invoke, in this case wired_shutdown.

wired_shutdown begins by calling pc$flush to write out all
of main memory once more. This is to ensure that changes made by
the previous loop in shutdown are reflected to secondary storage.
Next, disk LRU metering is turned off as the segment
disk_traffic_data is deleted by the next call, which deposits
disk addresses (these would cause references to disk traffic data
if LRU metering were on). A call is made- to
delete_segs$hardcore. This procedure, delete_segs, is used
during initialization to traverse the AST init seg and temp seg
lists to delete these types of segments. Here, it traverses the
hardcore seg list, deleting all supervisor segments that are not
in the hierarchy. Thus, any segment that is paged must be in the
hierarchy and wired if it is to be used beyond this point. The
point of deleting these segments is to relinquish their disk and
paging device storage. If this were not done, this (disk)
storage would be unusable until the next "long" run of the
·salvager. Next, the disk and paging device storage occupied by
the descriptor segment of the initializer is relinquished. This
does not, however, delete this segment, which is still in use.

Next, the paging device is flushed via a call to
pc$pd_flush_all. This causes read-write sequences (rws) for all
modified (with respect to disk) pages on the paging device and
the freeing of all others. The paging device is then disabled,
and another call to pc$flush made to write out all pages that
were in main memory, but had copies on the paging device at the
time of the call to pcd$pd_flush_all. Such pages were driven off
of the paging device by pc$pd_flush_all as the latter noticed
that they had copies in main memory, which would be written out.
Next, the updated paging device map is written out to the paging
device, pc$write_pdmap for the benefit of the salavager.

4-7 AN70

Finally, the FSDCT is written out, reflecting all changes to'
device allocations and the root file map during the entire run
and shutdown. BOS is then invoked via pmut$bos and shutdown is
complete.

pc$flush is called several times during shutdown--before the
deactivate loop, after the updateb loop, and after the flush of
the paging device. While only the last of these is strictly
necessary, the repeating of this step serves as a hedge against
failure of any of the intervening steps. This is also done as
one of the first steps of emergency shutdown.

Also at several times during shutdown, a variable in the
FSDCT indicating the relative success of shutdown is updated.
This allows the salvager and BOS to make decisions based upon the
relative success (last point passed successfully) of shutdown.

EMERGENCY SHUTDOWN

After an unexpected return to BOS due to a system failure,
the operations performed by shutdown must still be performed if
the consistency of the storage system is to be maintained.
However, the state of the Multics environment at this time is
unclear--it is not known which mechanisms are functional and how
much so. Thus, many redundant measures have to be taken to
ensure the success of as many steps as possible.

After Multics has returned to BOS due to an unexpected
error, a DUMP or FDUMP can be taken by the operator. After this,
the BOS command ESD can be given to initiate an emergency
shutdown. This command alters the machine state saved by BOS at
the time of entry to BOS. The segment emergency_shutdown is
located by BOS from the SLT. The machine conditions are altered
such that a GO (CONTIN) command resumes control at the first word
of this segment. Such a command is then issued. The procedure
emergency_shutdown assumes control. This procedure is so written
that it can be entered in absolute mode if its base address is
known. Thus, it first establishes its linkage pointer and a text
base pointer from text-imbedded points set up by
initialize_faults$fault_init_one. It then enters appending mode.

emergency_shutdown sets the flag tc_data$system_shutdown
disabling locking and zeroes tc_data$wait_enable, reverting to
the initialization wait/notify mechanism. These measures reduce
the dependency on locking mechanisms operating properly. It is
not even known that locks were in a consistent state at the time
of the crash. The SCS is updated to show that only the bootload
processor is running, thus disabling connects sent by page

4-8 AN70

control. The sys_level (no interrupts other than sys_trouble'
allowed) mask is set. The APT is then scanned for a process
that is loaded and eligible. The process that crashed may have
been an idle process, which has no usable PDS, or may be
defective in some other way. The crashing process is used only
if no other is found. If a usable process is found, an LDBR is
done switching into that process. The PRDS SDW is carried along
as when LDBR is performed by traffic controller.

Next a stack frame is set up on the PRDS to allow calls to
be made to entries in wired code which expect a wired stack.
Next, the reconfiguration, AST, page table, and traffic
controller locks are forcibly unlocked. They may have been
locked at the time of the crash and will never be unlocked
otherwise. Directory locks are special-cased by means of the
switch tC_data$system_shutdown. Also at this time, the process
ID of the running process is changed to 777777777776, so that no
lock may ever appear to this process to be locked by it (mylock
error). The in_bos flag set by the interrupt interceptor (see
the Process and Processor Control PLM) is also reset.

Calls are now made to forcibly reset the operator's console,
the syserr logging mechanism, and the 10M manager. Special
entries are provided within these mechanisms to forcibly reset
possibly inconsistent states at this time. A call is made to
device_control$timeout to post any disk status that may be
unprocessed. An entry to wired_shutdown,
wired_shutdown$wired_emergency, is now called via
shutdown switch. The latter enables and initializes the shutdown
stack, switches to it, and calls wired_shutdown$wired_emergency.

wired_shutdown$wired_emergency, running on the shutdown
stack, writes out the FSDCT, flushes main memory, writes out the
FSDCT once more, writes out the paging device map, and then calls
shutdown$emergency, which proceeds with normal shutdown just
beyond the point where tc_shutdown is called (i.e., starting with
the deactivation loop). The idea of all of these measures is to
do each one as early as possible in case the next one fails due
to unknown or unpredictable causes. Writing out the FSDCT is
very important and very easy. Thus, it is wise to do this before
flushing main memory, which is less likely to succeed and less
important (An inconsistent FSDCT can cause reused address
failures, while inconsistent segment contents is a less fatal
problem. Neither is truly acceptable, though). As the FSDCT
will likely be modified by writing out main memory, it must be
written out before the deactivate/update loop, which is even less
likely to succeed. This philosophy prevails during shutdown.

4-9 AN70

SECTION V

MODULE DESCRIPTIONS

Most of the modules used during initialization and shutdown
are intended to be called only once. They perform specific
functions that can on~y be done before certain functions are
performed and after certain others. Most of these procedures are
invoked with no arguments. It is impossible to describe these
procedures in module descriptions. Any comprehension of their
purpose or function must be gained by understanding them in
context. Hence, the names of these modules are given below, with
a brief description of what they do and references to earlier
sections for a full understanding of their function.

Some modules, specifically init_processor, make_branches,
start_cpu, prds_init, shutdown_switch and the prelinker, can be
called more than once, but· their function is again highly
specialized, and not of general utility. Descriptions are
included below.

SPECIALIZED MODULES

bootstrap1.alm

bootstrap2.alm

accepts environment from BOS. Sets
up segmentation, loads collection 1
into unpaged segments.

sets up stacks, calls prelinker.
Creates PL/I environment.

makes a template PDS for process
creation. PDS contains stack frame
for return to init_proc.

initializes bulk store mailbox.

5-1 AN70

clock_init.p11

disk_init.p11

emergency_shutdown.alm

init_branches.pI1

init_collections.pI1

init_processor.alm

initialize_dims.pI1

ascertains time zone and delta from
GMT from CONFIG deck.

adds unused pages of main memory to
paging pool ..

initializes disk control routines,
establishing their communication
with 10M manager.

sets up DATANET 6600 FNP" variables
and 10M manager communication".

accepts control from
emergency shutdown.
environment where much
allowed.

BaS for
Creates

freedom is

adds unused portions of unpaged
segments to paging pool.

places those supervisor segments
to go in the hierarchy in the
hierarchy. Initializes >pdd, other
sons of root.

dispatches initialization calls.

stores text-imbedded link pointers
in hardcore gates, sets up special
SDWs for fault restart programs.

starts a CPU. Contains first code
executed by a CPU and code for idle
process.

makes root directory
legitimate directory.

into

sets up core map, PD map, AST.

a

makes free list of system trailers
in str_seg.

sets up random system variables.

creates or accesses FSDCT,
dispatches device initialization
calls. Sets up paging.

5-2 AN70

initialize_faults.p11

initialize_kst.pI1

initializer.pl1

make_branohes.pI1

make segs_paged

sets up fault and interrupt ~ector
ITS pointers and text-imbedded
pointers.

used by process initialization.
Used by system initialization to
allow segments to be initiated by
setting up the KST of the
initializer. Also sets up search
rules.

permanent supervisor segment that
dispatches initialization calls,
mainly to init_collections and
delete_segs.

sets up lOB mailboxes and control
words. Sets up overhead channel
handling.

reads collection
hierarchy.

3 into the

recursively creates the storage
system branch for segments loaded
from the MST.

makes paged segments of unpaged
ones. Sets up root and other
special ASTEs. Formerly called
update_sst_p11.

sets up PRDS for a processor.

prelinker driver. Scans linkage
sections for links to be snapped.

snaps a given link.

initializes configuration data
about system controllers. Sets up
system controller addressing
segment (SeAS).

5-3 AN70

segment_loader.p11

shutdown.p11

shutdown_switch. aIm

start_cpu. p11

syserr_init.p11

trace_init.p11

wired_shutdown.p11

sets up CPU configuration
more system·~ controller
Assigns interrupt cells.
mask,s.

loads collection 2.

data,
data.

Creates

coordinates
Deactiva tes
branches.

normal
segments

shutdown.
and updates

establishes use
as a stack.
sets up frame.

of shutdown_stack
Initializes header,

builds SLT entries, searches the
SLT.

sets up segments for an i'dle
process. Calls init_processor.

sets up operator's console,
lists, wired buffers, etc.

DCW

initializes logging of operator's
console messages. Sets' up LOG
partition as a segment.

sets up traffic controller data
bases, sets up ini tializer
process. Starts bootload CPU, sets
up wai tin otify.

initializes system debugging trace,
if selected. Sets DCW lis ts, 'etc.

initializes
package.

typewriter

finishes normal
shutdown.

5-4

and

control

emergency

AN70

UTILITY MODULES

Other modules are called more than once. They are utility
modules used possibly several times during initialization and/or
shutdown. We describe them briefly here, giving their calling
sequence, descriptions, and references to the earlier sections.

5-5 AN70

This procedure traverses AST lists, deleting all segments on
that list. This deletion consists of calling pc$truncate to hand
back the disk and paging device storage occupied by the segments.
SDWs for these segments are zeroed as well. There are three
entries. No arguments are needed by these calls.

Usage

declare delete_segs$temp entry;

call delete_segs$temp;

causes all temp segs to be deleted. Used at the end of the
initialization of each of collections 1 and 2.

declare delete_segs$init entry;

call delete_segs$init;

causes all init and temp segs segments to be deleted. Used at
the end of initialization. This call is made by initializer, a
supervisor segment.

declare delete_segs$hardcore entry;

call delete_segs$hardcore;

causes all supervisor segments not in the hierarchy to be
deleted. Used by wired_shutdown at shutdown time.

5-6 AN70

find find

Name: find

This utility module is used to locate selected cards in the
CONFIG deck.

Usage

declare find entry (char(4) unaligned, ptr);

call find (name, p);

where:

1 • name

2. p

ExamQles

more:

is the name of the type of CONFIG card sought.
(Input) .

is both input and output. If given as null, the
configuration deck is searched from its beginning.
Otherwise, it is searched from the point pointed to
by p. As a return value, p points to the first card
image of the type req~ired, having searched from the
required point. If returned as null, there are no
more cards of that type.

i=O;
p=null;
call find ("cpu", p);
if p=null then go to no_more;

1=i+1;
go to more;
1* i contains the number of "cpu" cards *1

5-1 AN10

free core free core

Name: freecore

This procedure is used to explicitly add a page frame of
main memory to the paging pool. It should be used only for such
page frames as were not in it at the time of the call. It is
used during reconfiguration and initialization.

declare freecore entry (fixed bin(17»;

call freecore (n);

where n is the number of the page frame to be freed, i.e., 3
means the block at address 6000 octal. (Input)

declare freecore$reserve entry (fixed bin(17»;

This entry is like freecore. However, if the page frame
being freed is in abs_usable memory, i.t is not marked as
abs-usable. This prevents 1/0 buffers from using it.

5-8 AN70

This procedure is used to create an AST entry (including
page table) for a segment on the MST, thread it into an
appropriate AST list, and return an SDW describing that segment.
It is used by make_segs_paged for collection 1 paged segments and
segment_loader for all collection 2 segments.

declare make_sdw entry (fixed bin(18), fixed bin(71),
ptr, ptr);

call make_sdw (segno, tsdw, astep, ptp)

where:

1 •

2.

3 ·

4.

segno

tsdw

astep

ptp

is the segment number of the segment for which an
ASTE is constructed. This segment number is used
to access the SLT. (Input)

is an SDW using the newly-created page table.
This can be placed in the descriptor segment using
appropriate calls.

is a pointer to the ASTE created. (Output)

is a pointer to the page table created. (Output)

make_sdw determines the proper size AST entry from the
max_length and cur_length fields of the SLTE. The TBLS card
overrides both of these. The appropriate list on which to- thread
the AST entry is critical. It is determined by the following
algorithm:

ELSE

ELSE

if unthreaded entry, or the segment has wired
pages, then not threaded at all.

if slte.temp_seg is on, then threaded on the
temp_seg list.

if sIte. branch_required is on, then threaded on
the regular AST list with AST entries of this
size.

5-9 AN70

ELSE

ELSE

if slte.init_seg is on, then threaded on the
irit_seg list.

threaded on the hardcore list, aste.hc turned on.

aste.ehs and aste.hc_sdw are turned on in all ASTEs, except in
the unthreaded case.

make_sdw$unthreaded is called in the same way as make_sdw, but
causes the creation of an un threaded entry_

5-10 AN70

This procedure is called to perform physical tape I/O on the
MST. It is called by tape_reader.

declare (tape_io$init_tape, tape_io$final_tape) entry;

declare (tape_io$get_unit, tape_io$get_unit) entry
(fixed bin(6));

declare (tape_io$read. tape_io$backspace, tape_io$rewind,
tape_io$unload, tape_io$skip_file, tape_io$set_density_800,
tape_io$set_density_1600) entry fixed bin (5);

declare tape_io$tape_interrupt entry (fixed bin(12), fixed bin(12),
fixed bin(71), fixed bin(3));

sets up the MST reading package.
The PCW left by bootstrap1 in
physical_record_buffer is
inspected.

closes the package. The tape
channel is marked and deassigned.

call tape_io$get_unit (unit_no)
extracts the current tape unit
number from the PCWs being used by
tape_io.

call tape_io$set_unit (unit_no)

call tape_io$read (status)

sets the current tape unit number
to be used by tape_io.

starts a read
physical_record_buffer.
status is returned through

5-11

into
Major

status.

AN70

call tape_io$backspace
through

call tape_io$set_density_1600

~--

perform functicns appropriate to
their names, returning status.

call tape_io$tape_inte~rupt (devx, listx, ·status~ level)
is performed by the 10M manager at
interrupt time.

5-12 AN10

This program, which reqds Multics Standard Tape, is called
to read the MST. It uses tape_io to perform its 1/0.

declare tape_reader entry (ptr, fixed bin(18));

call tape_reader (p, n);

where:

1 • p is a pointer to where words are to be read. (Input)

2. n is a count of how rna ny words are to be read. (Input)

declare tape_reader$init entry;

call tape_reader$init;

This call initializes this prograM, and calls tape_io$init_tape.

declare tape_reader$final entry;

call tape_reader$final;

Rewinds the MST and calls tape_io$final_tape.

5-13 AN70

APPENDIX A

abs-segs

The concept of an abs-seg is used many times during
initialization and plays a critical role in the procedure
make_segs_paged. For those who are not familiar with this
concept, we provide here an explanation of the use and
construction of abs-segs.

A program running in the Multics hardcore, including
initialization and shutdown, has access to the descriptor segment
it is using. It is therefore possible for a hardcore program to
construct an SDW pointing to any legitimate page table or
contiguous region of main memory. This SDW can be stored at any
place in the descriptor segment, and the segme;nt thus pointed to
can be referenced via the segment number describing that
descriptor segment slot.

Furthermore, the meaning of pointers and symbolic references
to that segment number change as the SDW is changed. The segment
described by that segment number takes on different identities as
the SDW is changed. It is not any given segment at all, but
different ones at different times. The segment of changing
identity assigned to that segment number is known as an abs-seg.
The reserving of segment numbers for such use is valuable as it
allows symbolic references to be made to the abs-seg, which in
fact reference different segments as the SDW is changed.

Two examples of abs-segs follow.

Page control must check for zero pages of main memory, when
it is time to write a page out. It is not known if the page
belongs to a segment that is known in this process or not.
Hence, page control constructs an SDW describing that page only
and places it in the descriptor segment position for the segment
abs_seg1. Now, page control need only check the first 1024 words
of abs_seg1 to see if they are zero.

A-1 AN70

Segment control searches the AST for an AST entry to preempt
when one is needed. It decides to deactivate a given segment but
must update the branch in the containing directory of the
segment. An AST entry contains a relative pointer to th~ AST
entry of the containing directory of its segment. Thus, segment
control fabricates an SDW describing the page table in the AST
entry of the containing directory and places it in the descriptor
segment position for the segment dir_seg. ·A pointer to dir_seg
is now passed to the branch updating routine, as a pointer to the
containing directory of the segment. Neither the segment being
deactivated nor its contain~ng directory need be known in the
current process.

A-2 AN70

A

AST 1-8, 1-10ff, 1-21ff,
1-27ff, 1-35, 1-39ff,
2-20ff, 2-28, 3-1, 3-3,
3-5, 3-7, 3-10ff, 3-20,
4-1ff, 4-4, 4-6ff, 4-9,
5-2

B

BaS 1-1ff, 1-14ff, 1-19ff,
1-25ff, 1-29, 1-39ff,
2-1ff, 2-10ff, 2-17,
2-21ff, 2-27, 3-2ff, 3-15,
4-1, 4-4, 4-7ff, 5-1ff

bootstrap1 1-6, 1-10ff,
1-13ff, 1-23, 1-25ff,
1-29, 1-31, 1-33, 1-35,
1-38ff, 2-1ff, 2-7ff,
2-25ff, 2-28, 3-2ff, 5-1,
5-8

bootstrap2 1-17ff, 1-23ff,
1-38, 2-4ff, 2-7, 3-3, 5-1

build_template_pds 3-16,
5-1

C

CONF1G deck 1-1, 1-3ff,
1-10, 1-14ff, 1-29, 1-31,
2-1, 2-11, 2-14, 2-16,
2-24, 2-28, 3-4, 3-10ff,
3-16,3-21,3-23,5-2,
5-5ff

clock_init 1-39, 5-2
collect_free_core 1-35,

2-27, 5-2
config 1-1, 1-3ff, 1-10,

1-14ff, 1-29, 1-31, 2-1,
2-11,2-14,2-16,2-24,
2-28, 3-4, 3-10ff, 3-16,
3-21, 3-23, 5-2, 5-5ff

D

DATANET 6600 FNP 1-15,
1-20, 1-26, 1-29, 1-41,
2-3, 3-22, 5-2

dn355_init 1-26, 5-2

E

emergency_shutdown 1-2,
1-24, 2-9, 4-1ff, 4-4,
4-6, 4-8, 5-2, 5-4

F

fault vector 1-13, 1-15,
1-18ff, 1-23, 1-29, 1-31,
2-2ff, 2-9, 3-14

fim 1-18, 1-24, 2-9
free_unused_pages 2-21, 5-2

H

hierarchy 1-4, 1-7ff,
1-10ff, 1-14, 1-16, 1-19,
1-22, 1-27ff, 1-40, 2-22,
3-1ff, 3-5ff, 3-8ff,
3-13ff, 3-19, 3-24, 4-2,
4-4, 4-6ff, 5-2ff, 5-5

I

idle process 1-41, 3-1,
3-15, 3-17ff, 3-24, 4-8,
5-2, 5-4

10M 1-15ff, 1-20, 1-23,
1-25ff, 1-29, 1-38ff,
2-2ff, 2-11ff, 2-16ff,
2-22, 3-2, 3-23, 4-9,
5-2ff, 5-9

ini t_branches 1-11, 1-40,
3-11ff, 4-6, 5-2

init_collections 1-18,
1-38, 3-24, 5-2ff

init_hardcore_gates 1-40,
3-4, 3-8, 5-2

init_processor 3-18,
3-20ff, 5-1ff, 5-4

init_root_dir 1-22, 1-40,
3-9ff, 3-24, 5-2

init_sst 1-35, 1-39, 2-19,
5-2

init_str_seg 1-40, 5-2
init_sys_var 1-40, 3-4, 5-2
initialize_dims 1-21, 1-26,

1-39, 2-19, 2-22, 3-9, 5-2

initialize_faults 1-18,
1-19, 1-24, 1-34, 1-36,
1-37, 2-8, 2-18, 2-19,
4-8, 5-3

initialize_kst 1-22, 1-40,
3-9, 3-24, 5-3

ini·tiali.zer (process) .. 1-3,
1-21ff, 1-24ff, 1-27,
1-38, 2-8, 3-9, 3-14ff,
3~21ff, 4-6ff, 5-3ff

initializer (program) 1-18,
1-24, 3-2, 3-24, 4-4

interrupts 1-2, 1-4,
1-16ff, 1-24ff, 1-38ff,
2-1ff, 2-7ff, 2-15ff,
2-22, 2-28, 3-4, 3-18ff,
4-1, 4-8ff, 5-3ff, 5-8ff

iom_data_init 1-38, 5-3

K

KST 1-22, 1-40, 3-2, 3-5ff,
3-12ff, 3-16ff, 3-19,
3-24, 4-4, 5-3

L

load_system 1-25ff, 1-40,
3-15, 5-3 LOT 1-1-1, 1-24,
2-5ff, 2-10, 3-4, 3-8

M

make_branches 3-12, 3-14,
5-1, 5- 3

make_segs_paged 1-21, 1-35,
1-39, 2-19, 2-25ff, 3-10,
4-7, 5-3ff, 5-7

mask, masks 1-17ff, 1-38,
2-2, 2-8, 2-12ff, 2-15ff,
2-28, 3-20, 4-8,

p

prds_init 2-19, 3-19, 5-1,
5-3

pre_Iink_1 1-23, 1-38,
2-5ff, 3-3, 5-3

R

reconfiguration 1-2, 2-7,
2-121 2-15ff, 2-18,
3-18ff, 3-21, 4-9, 5-6

S

scas~init 1-20, 1-38,
2-12ff, 2-20ff, 5-3

SCS 1-27, 1-38ff, 2-7ff,
2-12, 2-14ff, 2-17ff,
3-18ff, 3-21, 4-8, 5-4
scs_init 1-27, 1-38ff,
2-12, 2-15, 2-17ff, 5-4

segment_loader 1-11,
1-25ff, 1-40, 2-8, 3-2ff,
5-4, 5-7

shutdown (system) 1-2,
1-22, 1-24, 1-28, 2-22ff,
2-27, 4-1ff, 5-1ff,

shutdown (program) 5-4
shutdown_switch 4-6ff, 4-9,

5-1, 5-4
S L T 1-2, 1-4 f f, 1 - 1 1 ,

1-13ff, 1-20, 1-23ff,
1-31, 1-33, 1-35, 1-38,
1-40, 2-2ff, 2-22, 2-24ff,
3-2ff, 3-7, 3-9, 3-12ff,
sIt_manager 1-23, 1-38,
2-4ff, 2-7, 3-3, 5-4

start_cpu 3-18, 5-1, 5-4
syserr_Iog_init 1-39, 5-4

T

tc_init 1-25, 1-41, 3-19,
3-21ff, 5-4

trace_init 1-39, 5-4
tty_init 3-23, 5-4

w

wired_shutdown 4-4, 4-6ff,
4-9, 5-4ff

"

w
z
::J
C!)
z
o

J

HONEYWELL INFORMATION SYSTEMS
Publications Remarks Form*

TITLE:
SERIES 60 (LEVEL 68) MULTICS SYSTEM
INITIALIZA TION PROGRAM LOGIC MANUAL

ERRORS IN PUBLICATION:

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:

(Please Print)

FROM: NAME ____________________________________ __

COMPANY __________________________________ __

TITLE ________________________ _

ORDER NO.:! AN70, REV. 0

DATED: I FEBRUARY 1975

DATE: ________________ _

*Your comments will be promptly investigated by appropriate technical personnel, action will be taken as
required, and you will receive a written reply. If you do not require a written reply, please check here. n

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

POSTAGE WILL BE PAID BY:

HONEYWELL INFORMATION SYSTEMS
60 WALNUT STREET
WELLESLEY HILLS, MASS. 02181

ATTN: PUBLICATIONS, MS 050

Honeywell

FIRST CLASS
PERMIT NO. 39531
WELLESLEY HILLS,
MASS. 02181

UJ
z
:::i
(!)
z
o
....J
«
I­
::::>
u

UJ
Z
....J
(!)
Z

, 0
,J

«
a
....J
o
U.

UJ
z
:::i
(!)

, z , g
, «

a
....J
o
U.

12863
2.5C375
Printed in U.S.A.

The Other Computer Company:

HoneY"'ell

HONEYWELL INFORMATION SYSTEMS

In the U.S.A.: 200 Smith Street, MS 061, Waltham, Massachusetts 02154
I n Canada: 2025 Sheppard Avenue East, Willowdale, Ontario AN70, Rev. 0

