

Notes on the Programming Language LISP

"push" in your program, it will be as efficient as had you put the
setq and cons in there instead.

The second incredible thing about macros is that the entire
power of the 1language 1is available to them. To help your macros
organize the meaning of their forms, you can use any function in Lisp,
builtin or of your own construction. You can call other-=language
programs, or cause your programs to be compiled differently at
different times of day. The power of the macro facility derives from
the fact that Lisp code is Lisp data, and as such is trivially easy to
deal with. Think of the complexities of handling PL/I code (ASCII or
EBCDIC characters strings) in PL/I, or FORTRAN code in FORTRAN.

The third and perhaps most incredible thing about macros is
the ability to define abstract and complex languages that bear little
relation to Lisp, except in parentheses. Since Lisp is capable of
expressing just about anything computational, one can write forms
using macros, whose translation into Lisp can be just about anything
computational. One can tailor the language to define constructs that
suit any given application, and have it be compiled into code as
efficient as the result of explicit coding in the basic primitives of

Lisp.

"Functions compute, macros translate."
-Do A . MOOO

21

Notes on the Programming Language LISP

A Close Parenthesis

It is hoped that these notes have provided a taste of the
true flavor of Lisp. Rather than concentrate on developing competency
in Lisp, we have chosen to expose the interested student to the basic
concepts, and a few usable programs, such that he or she might at
least say, "Well, Lisp, that's a bunch of stuff pointing to other
stuff, and 1it's really good for mak.ng models of things, or
simulation."”

We have tried to show you how Lisp car-and-cdr worlds are a
more reasonable representation of the things that make 1life
interesting than fixed decimal (15) or FILE OLDMSTR RECORD 1S
PAYROLL. It 4is hoped that you can at least extrapolate in your mind
what kind of neat things one can do with this. Our sincerest hope
is that you will see a piece of that part of the computer programming
world where the computer has become a tool whereby man extends his
mind and his own grasp of it.

22

LISP - A Radical Introduction
Worksheet #1

(2**'*‘¢r3 na*!g)

The class notes and lectures for this course will go a
long way towards introducing you to the Lisp language, and with
the aid of these worksheets it is hoped that you will get some
"hands-on experience" with Lisp as well. The worksheets are
designed to reinforce the material covered in lecture, supplement
some of the more picky details not spelled out in the notes. and
raise additional questions in the student's mind to lead him to
more advanced examples.

Public terminals are available in many dorms, the
student center library, and at delphi in building 38 (room 344).
To use Multics from a 300 baud-rate terminal turn on the
terminal (halfduplex), dial extension 8-8313, press the "DATA"
button on the modem, replace the receiver back on the dataset and
press "linefeed" on the terminal. Multics will type an
introductory message such as:

Multiecs 33.0: MIT, Cambridge, Mass.
Load = 17.0 out of 85.0 units: users = 17

You may then login with your Personid and Projectid
FOLLOWED BY A CARRIAGE-RETURN AND A LINE-FEED as follows:

login JDoe SIPBIAP

Substituting YOUR OWN PERSONID for John Doe's 1in the
example above. Multics will then ask for your password, which
‘you must again follow with a carriage-returns and a 1linefeed.
After you have 1logged in successfully, typing the word "lisp"
(all lowercase) will start up the Lisp interpreter.

You are now in a read-eval-print loop. Lisp will read
in any form you type, evaluate it, and print the value it
returns.

Below are a series of Lisp forms to evaluate. You may
choose to try and work them yourself and then check you answer by
using the computer, or possibly you will want to have the
computer evaluate the forms in order to help you understand a
new concept that you are having problems with. Experiment}] Try
your own problems; this is one of the best ways to get use to
using and understanding Lisp.

NOTES:

To correct typing errors, use "number-sign" (#) to delete the
last character typed and "at-sign" (€) to delete the current
line. When you first login you must follow each 1line with a
carriage-return AND 1linefeed. 1If you are using a decwriter you
may issue the command "1a36" before starting up Lisp, after which
only a carriage-return OR a linefeed is required. This may also
be accomplished after Lisp has been invoked by having Lisp
evaluate: (cline "1la36")

To get out of an endless loop or to get back to Lisp if things
don't seem to be going right simply hit the "break" key once
(sometimes labeled "quit" or "attn") and when Lisp types "CTRL/"
then you type the letter "g" (followed by a carriage-return and
linefeed) and you will be back in Lisp's read-eval-print loop.

The character slash "/" is wused by Multics Maclisp to quote
certain characters (for instance, to enter a symbol whose name
has a parenthesis or dot or space in it). Therefore in order to
use the "/" subr to divide you must enter two slashes. For
example: to divide 6 by 2 you would enter: (// 6 2).

You may get out of Lisp and back into Multics by typing "(quit)"
and you <can get out of Multics by typing "logout" and then
hanging up the telephone.

Your account on Multics may be used from 6:00 PM until 11:00 AM
on weekdays and all day Saturday and Sunday.

For more detailed information on how to use Multics, a free set
of "Notes on Using Multics" is available from the Student
Information Processing Board.

If you should run out of funds, or would like to do a project or
just 1learn more about Lisp after the course is over, apply for
money at the Student Information Processing Board.

For help with any questions or problems call the Student
Information Processing Board at extension 3-7788 or come in to
the office in room 39-200.

(set (quote a) 6)
a

(setq b 5)

b

(+ 4 5)

(quote (+ 4 5))

(+ a b)

'(+ a b)

(* 3 4)

(* (+ a3) (+ b4 56))

a
(quote a)

'a

(symeval (quote a))
(symeval 'a)

(eval ‘'a)

(set (quote colors) (quote (red green blue)))
colors

(car colors)

(cdr colors)

(cons (quote red) 'yellow))

(setq firstcolor (car colors))

(setq paints (cons (quote yellow) colors))

O

nil

(car nil)

(edr nil)

(setq smallcons (cons (quote foo) nil))
(car smallcons)

(cdr smallcons)

(quote a)
'a
'(a . b)

'*(a . nil)
‘(a . ((b . nil) . nil))

'((a . (b . nil)) . e)

(setq alph6 '(abcdef))
alph6

(car alph6)
(quote alph6)
(cdr alph6)
(cddr alphb6)
(cdddr alph6)
(cddddr alph6)
(cadr alph6)
(caddr alph6)
(cadddr alph6)

(setq pair (cons 'left 'right))
pair

(car pair)

(rplaca pair 'wrong)

(car pair)

(rplacd pair 'correct)

(cdr pair)

(rplaca pair alph6)

(rplacd pair nil)

(rplacd pair 'alph6)

(/77 6 2)

(setq egn "(¥* (+ a b) (- 4 (*¥ 3 a (// 4 b)))))
(car eqn)

(cdr eqn)

(quote eqgn)

(eval 'egn)

(eval eqn)

(cadr eqn)

(caadr eqgn)

(caddr eqn)

(setq d 'e)

(setq e (quote f))
(set (quote f) 4)
(quote d)

d

(symeval d)

(eval d)

(eval (quote d))
(eval e)

(eval f)

(eval (eval d))

Lisp - A Radical Introduction
Worksheet #2

NOTES:
What to do when an error occurs.

If Lisp finds that it is about to add two conses together, or
evaluate a symbol that has no binding, or any other illegal
action that should cause an error to be printed, Lisp places you
back into a read-eval-print 1loop (as usual) WITHOUT unbinding
anything. This allows you to examine the bindings of various
symbols as they were bound when the error occured. 1In order to
undo these bindings you can send a control-g to Lisp. On Multics
this is done by hitting the "break" key once (sometimes labeled
"quit" or "attn") and when Lisp types "CTRL/" then you type the
letter g (followed by a carriage-return and linefeed) and all of
the TEMPORARY bindings that were set at the time the error
occured will be forgotten. This was not terribly important on
worksheet 1 when no temporary bindings were made. Beginning with
worksheet 2 you will be defining and using your own functions.
It is important to release temporary bindings when an error
ocecurs. To better understand what happens try the following
example:

(defun zort (x y 2z)
(progn (print x)
(print y)
(print 2z)
(print w)))
(setq x 15)
X

(zort 10 20 30)
'

y
z

w
CTRL/g ; hit "break" then "g" then "carriage-return linefeed"
X

Changing the base used for reading and printing fixnums:

The symbol "base" is bound to a fixnum which determines what base
numbers are printed in. Similiarly the symbol "ibase" 1is bound
to a fixnum which the reader uses to determine what base numbers
read into lisp are in. Therefore evaluating the forms (setq base
10.) and (setq ibase 10.) will cause 1lisp to read and print
fixnums in decimal rather than octal.

-Page 1-

Worksheet 2

; PROBLEM 1
; Evaluate the following forms:

(> 5 4)

(> 4 6)

(< 37)

(< 4 4)

(=5 (+ 3 2))

(setq a 6)

(setq b 4)

(> (+ ab) (- (¥ ab) a))

(not (> 6 3))

(null (> 6 3))

(not (not (> 3 6)))
(null (not (> 3 6)))
(null nil)

(null (quote nil))
(null 7)

(setq smb 'foo)

(set (quote 1lst) '(foo bar baz))
(set 'fxn 17)
(symbolp smb)
(symbolp 1st)
(symbolp fxn)
(symbolp (quote 1lst))
(symbolp (quote (a)))
(atom smb)

(atom fxn)

(atom 1lst)

(or t nil)
(or (> 5 6) (< 4 3))
(or nil 5)
(or (atom 1st) 'lst-is-not-an-atom)
(or (atom smb) 'smb-is-not-an-atom)
(setq num 3)
(cond ((z num 2) 'two)
((= num 3) 'three)
((z num 4) 'four))

(cond ((atom 1st) 1st)
(t '"1st-is-not-an-atom))
(and t nil)

(and (> 5 4) (< 3 4))
(and (< num 4) (> num 2) 'num-is-3)

(setq alph (list 'a 'b 'c 'd 'e))
(setq bet '(f g h i j k))

(setq fred '(sam))

(cons fred bet)

(cons 'fred bet)

-Page 2-

Lisp - 1978

Worksheet 2 Lisp - 1978

(append fred alph)

(append alph bet)

(list alph bet)

(cons alph bet)

(append alph (list alph bet) nil bet '((end)))

(memqg 'a alph)

(not (null (memq 'a alph)))

(memq 'a bet)

(memq (car fred) fred)

(delq 'h bet)

bet

(append alph (list (car bet) (cadr bet)) (cons 'h (ecddr bet)))

'*(lambda (x) (+ 1 x))
((lambda (x) (+ 1 x))
(defun incr (x) (+ 1 x
(incr 6)

(setq incr ‘december)
(grindef incr)
(grindef (quote incr))
incr

y)
))

PROBLEM 2
Use defun to create a function that switches the order of 2

elements in a list the same way that the following lambda
expression does it.

“e Wwe woe we

((lambda (x) (list (cadr x) (car x)))
'*(a b))

PROBLEM 3

Presented below are three functions for computing factorial:
fact0, factl, and fact2. FactO is a recursive function taken
directly from the definition of factorial. The second, factil,
is an iterative fortranesque example using prog. The final
example is also an iterative implementation using the new style
"do" function. Note that there is no body to the do. Write
three separate functions similiar in style to the three
factorial functions that compute the sum of a list of fixnums.
Thus (sum '(4 6 3 5)) should evaluate to 22 (octal) and

(sum '()) should evaluate to zero. "sumO" should be recursive,
"sumi1" should be iterative and use prog, and "sum2" should use
the do function.

WO Ve WO Ve VW VO VW YV Ve VWS VO W we

-Page 3-

Worksheet 2 Lisp - 1978

(defun factO0 (n)

(cond ((= n0) 1)
(t (*¥ n (fact0 (1- n))))))

(defun fact1l (n)

(prog (result)
(setq result 1)
label(cond ((= n 0) (return result)))
(setq result (¥ n result))
(setg n (1- n))
(go label)))

(defun fact2 (n)

We Wwe We Wwe we we we we

we Wt we we we we we

(do ((i n (1= 1i))
(result 1 (* result i)))
((= i 0) result)))

PROBLEM 3

The Lisp function "reverse" will create a new list with the top
level elements reversed. Thus (reverse '(a b (c d) e)) returns
(e (c d) b a). Write your own version of reverse called revil.
[Harder problem]: Also write a function rev2 which reverses
elements at all levels of a list. Thus

(rev2 '(a (bc (de) f g) (h i) k)) should return:

(k (i h) (g f (e d) c b) a).

PROBLEM 4

The function "delq" is a destructive function -- that is rplaca
and rplacd are used to actually delete the specified element
from the given list. Below is a function "removel" which
returns a new list with the requested element removed. Write
an iterative function which uses "do" that performs the same
task.

(defun removel (thing a-list)

(cond ((null a-list) nil)
((eq thing (car a-1list))
(removel thing (cdr a-1list)))
(t (cons (car a-list)
(removel thing (ecdr a- llst))))))

-Page 4-

Lisp -+ A'Radical Infroduction
Solutions toWorkshee} #2

NOTES:
mi»wyquMnmtmmMmbum@Mninmmmnm
8) The functions “nuli” and *not* are identical. '

b)jm functions “arnd® and "or* do not dwayi wt:lo:all olmw. In other words, they are faubrs Wke
i “cond”, *do", and "prog". Afthough they are use! 0qmmwwmmnmwcom
; orders of evaksation.
i 1

(ond h';x 6, (g0 Mﬁ‘))

i Is Wke saying

(cond (e’ x O (g u-Mm
!

but ls simpler. thu ‘ovaluating (or 3 ber) Ml(mtgumnmoynnwum

c) We apologize faglviuyouheunﬂo (qumf (qqou incr)) h!h m:m Those of you who sat there
| wealting for “grindef" to retum something soon leamed ithat “grindef* nmaaynbolmumdm not contain
lmy characters at all. (You, too, can get at mh myslm beast ‘Illply by doing (implede nit), for whatever
tht'swoﬂh) Thofmc“on'mv' umtﬂowwmaummmmmmwm
Ooflmdufmcﬂom or bound to other objects.

d)Mnnllspmdshuﬂmnwlhnummm Nvmbulsumlohhuu 10. This is why evaluating
i (setq base 10.) will convert the output base 'obuo 10 or (uu base 16.) to hexadecimal. Evaluating (setq
" ibase 10 will never change the value of "lbase’, muﬂuofmtmw\mpu. (Think about it.)

PROBLEM 2

Tholdnhmwuhmdofmlom!oamwwwnmehmwmummuNmm
expression when placed in the functional postion of a fis{ o be mu.qd In other words, create a function “switch®
such that (suitch '(l b)) —> (b a).

uum switch mm (st tcadr 1ist) tchr mm?
i]

Solutions 2 : ’ 2 Lisp - 1978

PROBLEM 3

A couple of points are worth noting here: The recursive definition of *sum” |s not only the shortest, but Is aiso the one
which most clearly represents the algorithm which we are trying to Inplomem We also leamed eariler that the subr "+"
can take a varlable number of arguments. A call to fhis subr takes place py means of ovaluating a list whose car Is the
symbol "+* and whoso cdr Is a list of the arguments we Mshlouuloﬁﬂmctlon. We can easlly write a function
which will create and evaluate such a list:

(defun sum (list) (eval (cons '+ list)))
Recursive deﬂnmon:;

(defun sum8 (list)
(cond ((null tist) 8)
(t (& (car 1ist) (sumb (cdr 1ist)ID)))

Prog definition:

(defun suml (list)
(prog (result)
(setq result @))
toop (cond ((null list) (return resull))) |
(setq result (+ result {cor Jist)))
(setq list (cdr list))
(go loop)))

Rerative definition:

(defun sum2 (list)
(do ((1 tist (cdr 1))
(resultl 8 (¢ result (car 1))))
((nutl 1) result)))

PROBLEM 4

it was possible to write these functions in several ummm ways, but We have given only the recursive and iterative
definitions below. Again, we notice that the recursive. _definitions lfo far more straightforward than thelr Herative
counterparts. Note also that the iterative definition of "rev2" does eonph a recursive’ cafi -- it would be quite halry
trying to write "rev2" without any recursion whatsoever. ﬂnalty. noie nul the doﬂnltlcm for "rev2" test only to see if
theilr arguments are atoms, not null lists as the dollvi"om; for *revi® do. | Tm Is m “nif" is an atom as well as a
Hist, and (cond ((atom x) x)) is identical to (cond ;(tnufl x) x)) 1 "* is i, %

(detun revl (list)
(cond ((null List) nil)
(1 (append (revl (cdr list)) Cligt (cor 1ist)N))

(defun revl (list),
(do ({old-List list (cdr old-1ist))
(newu-1ist nit (cons (car old-1ist) new-List)))
(null old-1ist) neu-list)))

Sokutions 2 . 3 Lisp - 1978

(detun rov2 (list)
tcond t(atom tist) (ist)
(t Gappend (rev2 (cdr 1ist)) (1ift trav2 Gcar Hist)))))))

(defun rev2 (list)
: tcond ((atom 1ist) list)
(t (do (lolg-1ist list (cdr bid-pist)) . .
| (new-1ist nil (cons trev2 (car old-1is1)) hou-1ist)))

Unult old-1ist) meu-1isth)))),

PROBLEM &6
1

Several things are whrth noting here:

ov.:o._o.cloxli_ouiorosii..!o.!oT&‘.i&it-“t&@t.s.;g<oc
recall, uses the following symax:

(o ((Cirst var> Clnitial valve)' Crgpestyaive?) ... (nth verd ...0)
(Cond test) <exit form> ...)
Cbody) .

2.83.!og.&c.o-eo...-guo:“!.ifcooi!-.&s;&!&!ozﬂng However,
..o..oo-oﬁoxl!o.i..o..ﬁo&o.%sw-§--1<%33%g§.§o- index
variables. b .

b) A useful technique :zs..ozz.gssritari:.?.afif%zgzs-gsis
u:o...ooo:!.xoai.‘!?goif‘;a%o&gesiigg.osu?

©) Note also that the expressions that -3.”! a} Cinjtial valye) asd Crepest valve) can be arbitrarily hairy.
Expressions which are commonly used as repeat values are (¢ 1) of (cdr 1), it anything can be used. Note, for
oxample, the repsat value of new-Hist in the foliqwing’ Lo, (dopend mew-1ist ...).

(defun remove :...ro a-list)
(do ((old-Tist a-list (cdr oid-1ist))
(nou-1ist nil (sppend neu-list
J toond ({eq Rhing (car:.w: "o’
: 4 Clist Gcor old<lis))IN))
Cnull old-1ist) new-iist)))
1

Lisp--- A Radical Introduction
" Worksheet #3

- PROBLEM 1
~ Evaluate the following fonn.s:

{list *a *b *e)

"abe)

(ist 1 *(a . b) *fred 'm)
tist)

Uist L nit 3)

Chist Clist CHist niD)))

(append * (hou are you) (list °today '?))
. (append (1ist 1 2 3) nil *(4 S nit &)

(pu!brop, "fred 13 'age)

(get ’fred ’age))

(get ’fred ’oues-back-taxes)

{putprop ’{red 20888 ’oues-back-taxes)
{get *fred *oues-back-taxes)

{plist ?fred)

(remprop ’fred ‘oun-luet-uns)

* tget 'lrod ‘oues-back-taxes)

(get ’cor ~'subr-) ’
(defun: frobnicate (x) x)
" (get ’frobnicate "expr)
(get firob_nleal. ‘subr) -

tprint *ta b /.c))
(princ *(a b /.e)).
(print ’|Section 5.2|)
(princ ’|Section 5.2|)

(explodec *fred)

(explodec 'a/.b)

Cexplodec |1 em & funny sywbol. |)
(explodec *(1 2 3))

Cimplode *(a b ¢))

Gimplode *(h | | [ther o))

(lwlod.o hxplmc ’!Hcl!o. m ors you?|))

lupe 'prine '(-assaehutc!il))
hlpc ‘princ (expliodec "massachusetts))
(mapcar *1+ °(2 &4 6 B))

" (mapcer *fixp (a3 x bart (a ®) m

(mopcar *Clambda (x) (3 &7 x)) 742 & 6 B))

Worksheet 3 2 Lisp - 1978

(mapcar "'+ (2 4 6 8) *(-2 -4 -6 -8))
(mapcar ’cons ®’(one two three) ’(1 2 3))
(mapcar ’(lambda (x y) (putprop x y ’father))
* (USR PogBach ‘Isaac)
’ (Gworge " JZBath Rbraham))
(get "USR ’father)

--The following two functions are being introduced here and have not been mentioned previously. The function """ takes
two fixnums and retums the exponentiation of the first to the second. Note that since the magnitude of a fixnum must
be an integer, all results retumed will be rounded to Integers. The function "length® takes one argument, a list, and
retumns the number of elements in that list.. Here are some forms you can type in to sep what these guys do.

(~52)

4 -1
(length "(1 g a 47 bernie))
(length ' (1 (2 3) 4))
(length ' ()

PROBLEM 2

Use defun to create a function concatenate" which will take two symbols as argumen(s and will retum a symbol whose
name Is the concatenation of the names of the arguments. In other words, (concatenate ’hello ’there) -->
hellothere.

PROBLEM 3

On the last 'worksheﬁ you defined a function “rev2" which reversed a Iist and all of the elements of the fist Mlch were
themselves lists, l.e. (rev2 *(a (b c) d e)) --> (e d (c b) 8). Lisp has a bullt in fungtion (a sybr) called
"reverse” which retuns a list with only the toplevel elements of the list reversed, i.e. (reverse ’'(a (b e)'d @)) -->

(a d (b c) a). Using "mapcar” and "reverse", rewrite "rev2" -- your new detinition should be much simpler than your
earlier one. ’ ' ST

PROBLEM 4

Write a function which will sort a list of numbers. Hint: Define two functions -- one which sarts a list in a recursve
manner, and another which takes a number and a sorted list af numbers and retums a new list with the number Inserted in -
the appropriate place. It Is easlest if both functions are recursive. Notfe also that If we substitute the predicate
'alphalessp for the predicate "<", we can easlly modlfy the function jo sort symbols llphabetically

Worksheet 3 S o - mé

PROBLEM5
umu.m'mmmuoxmmmumymummmm Tvyh'num:nms

“o'un ‘who ({person) L
" (do ((1ist-of-1ists (mapcar *(lombds (x) (get x “Kids)) (get person ’Kids))
. tedr (ist-ol-lists)) ° :
T treu-list nil- toppend: (car 1ist-oi-Lists) ‘neu-1ist)))
(tnul !l Nn-o' tists) m—Hﬂ)M

Rowutwlmtldahbuetowukvmh-c-lhafu\ctldnmehlsmwﬂummto“m'wmﬂvoueholomt
otthosocondlmnon(a%Ms’wwmym&humwmoionnm.!hm.mom

(npe '(n-bda (father soﬂu (putprop father soms °kids))
S (abrsham issac ishmae! jaeob esau)
- *(Cisaac ishmasl)
" (jacob esau)
- (kedar abdes! nebatoth) .o
- (reuben simeon dan levi napthali issachar judah gad ssher zebulun jouph benjanin)
-leliphaz reve! jmh jalan koreh)))

"youm‘t ﬂmnommt‘sgohgon.m-m.hwow”iow—

Aget ’abrohan "wids)

(get (car (get ’abrM *kids)) ’kids)
- (who ’mahn) :

fuho ' isesac)

: PROBLEM 6

Write a symbolic dmemmalor which can handle expressions centaining addition, muitiplication, and exponentiation. ' The
: ﬂm argumem 1o this function should be the expression which Is.to be differentiated, ond' the second argument should be
-ln_ variable to which the differentiation should be performed with respect to. Arithmetic oxgnsglom are most easily
" represented as lists, with the car of the.list being the opetator, and the cdr beirig the operands (as usual). For example,
3x+4 should be represented as {+ (s 3 x) &). “The basicrules you should implement are listed below:

dx

-l

dx

dy

— =0 yox
k.

d R VIR
_'-; (usv) 8 o= § o=

dx o dx dx

d du dv
”"‘m?‘.:v..‘u’..v
dx - dx . dx
8 v veleu v dv

-8 BmVY mcoyu logu -
o e o

Worksheet 3 4 . Usp - 1978

An important thing to hote here is that your differentiator should not dctually attempt to perform the addition of two
expressions, simply create the list sfructure which represents their agdition. .For oxan'ple.‘lssunlng your function were
called "differentiate”, : : '

(differentiate '(x (+ a b) (+ x y)) ’x) .
should return
(+ (2 (+ab) (+18) (s (s xy (+08))),

But it should t;e obvious that this expression can be greatly slmpllﬂpd to (+« a b), which Is indeed the correct answer.
You may want to use the slmplmer olven JIn chapter 3.of the m.les In checking your answers.

Lisp provides'a useful function called "trace” for checking and debugglng funcions you may write. It Iis an fsubr and
takes a varlable number of arguments which are names of defined functions. Then, whenever any of these functions are
entered, Lisp will print the name of the function, the argumen!s which are being passed to the function, and a number
Indicating the depth to.which the func!lon Is recursing. For example, |If we had done (trace differentiate), then the
previous examp!e would have produced the following result:

a enQen-dil'crentlate'((# (+ ab) (+ x g)) x)) -
(2 enter ditferentiate ((+ x y) x))
(3 enter differentiate (x x))
(3 exit differentiate 1) ’
(3 enter differentiate (y x))
(3 exit differentiate 8)
(2 exit differentiate (+ 1 8))
(2 enter differentiate.((+ a b) x))
(3 enter differentiate (a x))
(3 exit differentiate 0) .
(3 enter differentiate (b x))
(3 exit differentiate 8)
(2 exit difterentiate (+ 0 8)) '
(1 exit d'!fqrenttale (v €5 (4 ab) (+18)) (= (s x g) (+ 8 8))))

The fsubr "untrace” will dlsconllnue tracing a glven function, and if qaﬂed with no arguments, will untrace all functions
which are ‘currently being traced. '

if you should manage tAo complete any or'all of problems 2 Ihrdugh 6, we would greatly appreciate your tuming in a
listing of your functions ai the next session.

Lisp == A Radical Introduction
Solution$ to Worksheet #3

' NOTES
Ammmmonwmmmn{ux&amh'ut&: :‘

u)mmmwmm.wuwn&nhm%wnmnuwsmm
Moxemmnmmuutnaquadmuwwh name, 1t must st be slashified, Le.
preceded by » slash.

b)mm:mw'mwmmhyﬁmim@my"o%' =< we can easlly define a "mepc®
end a W!\f\ldlhkouiymw:
]
(defun mapc (function arglist)
" (do ((args arglist (cér args))).
(tnull orgs) arglist)
tiuncall function (cor args))))

(de fun mapcer (;ﬁneuou arglist)

(do ((args orglist (cdr orgs))
~ (results il (append resulfs Guncll! function Gar' arge))))),
((mll orgs) rmlu)))

e)W'hOo'ﬂhc M'OM “bw

C)Fmtiomlﬁ!mm”twnmbouvhmmm 1m-qmmmmm-ww«

wwmwunmummtou mnm and user-defined functions witl
hwn'oxw'd‘um‘mymuhutao wm?nﬂmuwmnum
' PROBLEM 2

. Thlswoblmlsadwdmstmolybyw'iommiduh:dinwmmﬁtu,m .
these lists together, and then imploding the resul.))
|

(detun bﬁealmh{ (s &) Cinplode (append «a{’m&) u:,m.} s'.m);

PROBLEM 3

e»«muy.Nmngymunm«.mu&:y‘rmw 0ach of the slements within the ghven Nst,
NMNWMNsmutwmuMl-p '

. tdetun rev2 Clist)
(cond ((atom tist) Vist)
(1 (reverse (mapcor ‘rev2 nrm,n

Solutions 3 12 Lisp - 1978

PROBLEM' 4

Thls function works by taking the cdr of the list it Is yiveq. sorting 1, amll then inserting the car of the Hlist Inlc this new
sorted list. Note that the cdr must be sorted first be!oro attempting to'insert the car since "insert” ltms that its
second argument s aiready sorted. Note also that if we replace the predicate "< with *alphalessp®, m functions
can be used to sort lists of atoms.

(detun sort (list)
(cond ((null tist) nil)
(t Cinsert (car 1ist) (sort {cdr 1ist))))))

(defun insert (atom sorted-list)
(cond ((wll sorted-list) (list atom))
< ato- (car sorted-iist)) {cons atom sorted-list))
(t (cons (car sortad-1ist) (insert atom (cdr torlw-llﬂ))))))

PROBLEM &

Eva!uatlng (uho ’abraham) retuned a list of abraham's grwd\ﬂdron .0\ this by appending together the "kids"
properties of each of abraham's "kids".

PROBLEM 6

The following examples and the simple definitions of "mapc® and fmapcar® givea above both make use of the function

“funcall® which we wm briefly Introduce here. ‘As its name may hwly. t(to first argument to “funcail” (s the name of a
function to be caued and the subsequent arguMMs ‘o “funcall® are arguments to be passed to the function belm called.
For example, (funcall *car ’(a b c)) is equivalent to saying (car * (a! b c))

in writing the differentiation function, It would be possible 1o include [a test for each of the operations (addition,

multiplication, or exponentiation) which our function can hhndle, and this ls certainly a valid way of solving the problem.

The method we have chosen, however, assoclates a separate mferont!*ﬁon funciion with each of the operations (by
means of property lists). The simplifier which v«re‘vq included here also upkos use of this technigue.

(mapc * (lambda (x y) (putprop x y ’di"m)
O e |
'(diffplus difftimes di"oxpﬂ)

tdefun ditf (f x)
(cond ((equal x) 1)
(tatow 1) @ ‘
(1 (funcall (get (cor f) ’di"n) lx)))) 1

(defun ditiplus (4 %) (cons *+ (mapcar '(jum. (@) (@ift a x)) (ear 1))
i
(detun difftimes €f x)
{prog (u v)'
(nlq u (cadr ¢)
'w (cond ((null (cdddr 1)) caddr 1)) (§ (cmr 's (cddr 1)))))
(ntum (Hist '+ Ciist 's v “Hi v x’) (Hs! ’s v; (@itf v x10)))

(detun difiexpt (1. x)
(prog (v v).
(setq v (codr 1) v (coddr l"
h!q-n (list ¢
ist ‘s v um *hu@ist -y 1) (@11 e X))
“ln 's (Hu ' L v Kllﬂ ’lq w| Witt v u)))")

Gaopc *tlombda (x y) (putprop x ¢ 'umnn
Yo =8 /7 % tog) .
'(simplus u'-.lm simptines sispquotipnt siupexpt sisplog))

(detun evalp (exp)
(ond (member (cor exp) *(s - & // ~ lof))
(apply *ond (mspcer ‘mmberp !etim))ﬂ)

(detun simplify (exp)
(cond ((atom exp) exp)
((evalp exp) (ova! exp))
(t Cfuncall (get (cor exp) *simpin) (mapcer ‘siplity upmn

(‘jlm simplus (exp)
(delete § c&p)
(cond ((= Clength exp) 2) (cadr op)) Ut o))

Adatun simpminus g'np)
(delote § cptp)
(cond ((= (lmgth oxp) 2) oxp)
(t _(sppend (list '+ (cadr exp))
(mapcar * (losbda {x) K1t ’- x)) (cddr| ap))N)))

“'ﬂm simptimes (exp)
" (delete 1 exp)
(cond ((menber O exp) O)
((= Clength exp) 2) (cadr exp))
* (t (apply *append
(mapcer °* (lambda) (cond ((atom %) (1ist x))
Wlsqual (cor k) *8) (edr x))
%t st a0

exp))))

(datun simpguotient (exp)
(delete 1 oxp)
{cond ((equal (cadr exp) §) 8)
((menber 8 (cddr exp)) (error 'lelsun by m |b
(= Clongth exp) 2) (cadr exp))
({} (W (list "¢ (cadr oxp))
(mapcar * (lanbda x) R1ist ** x =1)) (olidr @xp))))))
L]
(dofun simpexpt (axp)
(delete | oxp)
(cond (fequal (cadr oxp) 82 8)
‘ Coqdat (cadr oxp) 1) 1)
({= Clongth oxp) 2). (codr o:p))
"t exp)))
. { :
(detun sinplog (axp) (cond ((eq (cadr exp) *Xe) 1) (t o))

