

Notes on the Programming Language LISP

form in which it appears into some other form. The result of the
macro-function is a form, which is used in place of the original
(macro) form by either the interpreter or the compiler as appropriate.
Macros are defined just like regular functions, as follows:

(defun push macro (x)
(list 'setq (caddr x)(list 'cons (cadr x)(caddr x»»

Note that a macro always gets one argument, which is the
form in which it appeared.

Evaluating this defun gives "push" a macro property of
"(lambda (x)(list 'setq ••• " etc. Now the interpreter, upon seeing a
form whose car is a symbol with a macro property, says:

"Jeez, I don't know what this thing even means. However, my
programmer has given me a lambda expression which wIll translate it
for me into something I understand. So I'll apply that lambda
expression to this form, and work on what comes back insteadl"

So, eval calls his friend apply, and
(lambda (x)(list 'setq (caddr x)

is applied to

(list 'cons (cadr x)
(caddr x»»

(push (+ 32 yy mvn) mvlZ)

which, to this lambda expression is just another piece of
data. If you yourself apply that lambda expression to that list, you,
as eval, will get

(setq mv12 (cons (+ 32 yy mvn) mv12»

which is exactly what you want. Note that eval reconsiders the answer
returned by a macro as a form in place of the original. The macro did
nothing with the values -or- yy, mvn, or mv12, and performed no·
additions. It only messed around with a form IT understood, to
TRANSLATE it for eval.

An answer returned by a macro can have other macros in it,
or maybe even references to itself. As long as eval, reducin, it
(applying macros each time it gets one until it's not a macroorm
anymore) ultimately gets something that's not a macro form.

The first incredible thing about macros is that the COMPILER
is willing to invoke your macros at the time he is compiling your
programs, so you can tell him what your stuff means. That is to say,
the compiler, which is a Lisp program, will invoke your code during
compilation to help him in his task. Every macro can be thought of as
a little piece of a Lisp compiler. Hence, if you define and use

20

lotes on the Programming Language LISP

"push" in your program, it will be as efficient as had you put the
aetq and cons in there instead.

The second incredible thing about macros is that the entire
power of the language is available to them. To help your macros
organize the meaning of their forms, you can use any function in Lisp,
builtin or of your own construction. You can call other-language
programs, or cause your programs to be compiled differently at
different times of day. The power of the macro facility derives from
the fact that Lisp code is Lisp data, and as such is trivially easy to
deal with. Think of the complexities of handling PL/I code (ASCII or
EBCDIC characters strings) in PL/I, or FORTRAN code in FORTRAN.

The third and perhaps most incredible thing about macros is
the ability to define abstract and complex languages that bear little
relation to Lisp, except in parentheses. Since Lisp is capable of
expressing just about anything computational, one can write forms
using macros, whose translation into Lisp can be just about anything
computational. One can tailor the language to define constructs that
suit any given application, and have it be compiled into code as
efficient as the result of explicit coding in the basic primitives of
Lisp.

"Functions compute, macros translate."
-D. A. Moon

21

Notes on the P~og~ammin& Language LISP

A Close Pa~enth __ sis

It is hoped that these notes ha~e p~ovided a taste of the
t~ue flavo~ of Lisp. Rathe~ than concent!ate on developing competency
in Lisp, we have chosen to expose the int~~ested student to the baSic
concepts, and a few usable p~og~ams, such that he o~ she might at
least say, "Well, Lisp, that's a bunch of stuff pointing to othe~
stuff, and it's ~eally good fo~ mak~ng models of things, or
simulation."

We have tried to show you how Lisp ca~-and-cdr worlds are a
more ~easonable ~epresentation of the things that make life
interesting than fixed decimal (15) or FILE OLDMSrR RECORD IS
PAYROLL. It is hoped that you can at least ~xtrapolate in your mind
what kind of neat things one can do with this. Our since~est hope
is that you will see a piece of that part of the computer programming
world where the computer has become a tool whereby man extends his
mind and his own grasp of it.

22

LISP - A Radical Introduction

Worksheet 11

The class notes and lectures for this course will go a
long way towards introducing you to the Lisp language, and with
the aid of these worksheets it is hoped that you will get some
"hands-on experience" with Lisp as well. The worksheets are
designed to reinforce the material covered in lecture, supplement
some of the more picky.details not spelled out in the notes. and
raise additional questions in the student's mind to lead him to
more advanced examples.

Public terminals are available in many dorms, the
student center library, and at delphi in building 38 (room 344).
To use Multics from a 300 baud-rate terminal turn on the
terminal (halfduplex), dial extension 8-8313, press the "DATA"
button on the modem, replace the receiver back on the dataset and
press "linefeed" on the terminal. Multics will type an
introductory message such as:

Multics 33.0: MIT, Cambridge, Mass.
Load = 17.0 out of 85.0 units: users = 17

You may then login with your Personid and Projectid
FOLLOWED BY A CARRIAGE-RETURN AND A LINE-FEED as follows:

login JDoe SIPBIAP

Substituting YOUR OWN PERSONID for John Doe's in the
example above. Multics will then ask for your password, which
you must again follow with a carriage-returns and a linefeed.
After you have logged in successfully, typing the word "lisp"
(all lowercase) will start up the Lisp interpreter.

You are now in a read-eval-print loop. Lisp will read
in any form you type, evaluate it, and print the value it
returns.

Below are a series of Lisp forms to evaluate. You may
choose to try and work them yourself and then check you answer by
using the computer, or possibly you will want to have the
computer evaluate the forms in order to help you understavd a
~ew concept that you are having problems with. Experiment& Try
your own problems; this is one of the best ways to set use to
uaing and understanding Lisp.

NOTES:

To correct typing errors, use "number-sign" (0) to delete the
last character typed and "at-sign" (@) to delete the current
line. When you first login you must follow each line with a
carriage-return AND linefeed. If you are using a decwriter you
may issue the command "la36" before starting up Lisp, after which
only a carriage-return OR a linefeed is required. This may also
be accomplished after-Lisp has been invoked by having Lisp
evaluate: (cline "la36") .

To get out of an endless loop or to get back to Lisp if things
don't seem to be going right simply hit the "break" key once
(sometimes labeled "quit" or "attn") and when Lisp types "CTRL/"
then you type the letter "g" (followed by a carriage-return and
linefeed) and you will be back in Lisp's read-eval-print loop.

The character slash "I" is used by Multics Maclisp to quote
certain characters (for instance, to enter a symbol whose name
has a parenthesis or dot or space in it). Therefore in order to
use the "I" subr to divide you must enter two slashes. For
example: to divide 6 by 2 you would enter: (I I 6 2).

You may get out of Lisp and back into Multics by typing "(quit)"
and you can get out of Multics by·typing "logout" and then
hanging up the telephone.

Your account on Multics may be used from 6:00 PM until 11:00 AM
on weekdays and all day Saturday and Sunday.

For more detailed information on how to use Multics, a free set
of "Notes on Using Multics" is available from the Student
Information Processing Board.

If you should run out of funds, or would like to do a project or
just learn more about Lisp after the course is over, apply for
money at the Student Information Processing Board.

For help with any questions
Information Processing Board
the office in room 39-200.

or problems call the Student
at extension 3-1188 or come in to

(set (quote a) 6)
a
(setq b 5)
b
(+ 4 5)
(quote (+ 4 5»
(+ a b)

• C+ a b)
(* 3 4)
(. (+ a 3) (+ b 4 5 6»

a
(quote a)
'a
(symeval (quote a»
(symeval 'a)
(eval 'a)

(set (quote colors) (quote (red green blue»)
colors
(car colors)
(cdr color s)
(cons (quote red) 'yellow»
(setq firstcolor (car colors»
(setq paints (cons (quote yellow) colors»

()
nil
(car nil)
(cdr ni 1)
(setq smallcons (cons (quote foo) nil»
(car smallcons)
(cdr smallcons)

(quote a)
'a
'Ca • b)
'Ca . nil)
'(a. «b. nil) • nil»
'«a. (b • nil» . c)

(setq alph6 'Ca b c d e f »
alph6
(car alph6)
(quote alph6)
(cdr alph6)
(cddr alph6)
(cdddr alph6)
(cddddr alph6)
(cadr alph6)
(caddr alph6)
(cadddr alph6)

(setq pair (cons 'left 'right»
pair
(car pair)
(rplaca pair 'wrong)
(car pair)
(rplacd pair 'correct)
(cdr pair)
(rplaca pair alph6)
(rplacd pair nil)
(rplacd pair 'alph6)

(II 6 2)
(setq eqn '(* (+ a b) (- 4 (* 3 a (II 4 b»»)
(car eqn)
(cdr eqn)
(quote eqn)
(eval 'eqn)
(eval eqn)
(cadr eqn)
(caadr eqn)
(caddr eqn)

(setq d 'e)
(setq e (quote f»
(set (quote f) 4)
(quote d)
d
(symeval d)
(eval d)
(eval (quote d»
(eval e)
(eval f)
(eval (eval d»

NOTES:

Lisp - A Radical Introduction

Worksheet 12

What to do when an err.or occurs.

If Lisp finds that it is about to add two conses together, or
evaluate a symbol that has no binding, or any other illegal
action that should cause an error to be printed, Lisp places you
back into a read-eval-print loop (as usual) WITHOUT unbinding
anything. This allows you to examine the bindings of various
symbols as they were bound when the error occured. In order to
undo these bindings you can send a control-g to Lisp. On Multics
this is done by hitting the "break" key once (sometimes labeled
"quit" or "attn") and when Lisp types "CTRL/" then you type the
letter g (followed by a carriage-return and linefeed) and all of
the TEMPORARY bindings· that were set at the time the error
occured will be forgotten. This was not terribly important on
worksheet 1 when no temporary bindings were made. Beginning with
worksheet 2 you will be defining and using your own functions.
It is important to release temporary bindings when an error
occurs. To better understand what happens try the following
example:

(defun zort (x y
(progn

(setq x 15)
x
(zort 10 20 30)
x
y
z

z)
(print x)
(print y)
(print z)
(print w»)

w
CTRLlg ; hit "break" then "g" then "carriage-return linefeed"
x

Changing the base used for reading and printing fixnums:

The symbol "base" is bound to a fixnum which determines what base
numbers are printed in. Sim111arly the symbol "ibase" is bound
to a fixnum which the reader uses to determine what base numbers
read into lisp are in. Therefore evaluating the forms (setq base
10.) and (setq ibase 10.) will cause lisp to read and print
fixnums in decimal rather than octal.

-Page 1-

Worksheet 2

; PROBLEM 1
; Evaluate the following forms:

(> 5 4)
(> 4 6)
« 3 7)
« 4 4)
(= 5 (+ 3 2»
(setq a 6)
(setq b 4)
(> (+ a b) (- (* a b) a»

(not (> 6 3»
(null (> 6 3»
(not (not (> 3 6»)
(null (not (> 3 6»)
(null ni 1)
(null (quote nil»
(null 7)

(setq smb 'foo)
(set (quote 1 st) '(foo bar baz»
(set 'fxn 17)
(symbolp sm b)
(symbolp 1st)
(symbolp fxn)
(symbolp (quote 1st»
(symbolp (quote (a»)
(atom smb)
(atom fxn)
(atom 1st)

(or t nil)
(or (> 5 6) « 4 3»
(or nil 5)
(or (atom 1st) 'lst-is-not-an-atom)
(or (atom smb) 'smb-is-not-an-atom)
(setq num 3)
(cond «= num 2) 'two)

«= num 3) 'three)
«= num 4) 'four»

(cond «atom 1st) 1st)
(t 'lst-is-not-an-atom»

(and t ni1)
(an d (> 5 4) « 3 4»
(an d « n um 4) (> n um 2) , n um- i s- 3)

(setq alph (list 'a 'b 'c 'd 'e»
(setq bet '(f g h i j k»
(setq fred '(sam»
(cons fred bet)
(cons 'fred bet)

-Page 2-

Lisp - 1978

Worksheet 2 Lisp - 1978

(append fred alph)
(append alph bet)
(list alph bet)
(cons alph bet)
(append alph (list alph bet) nil bet '«end»)

(memq 'a alph)
(not (null (memq 'a alph»)
(memq 'a bet)
(memq (car fred) fred)
(delq 'h bet)
bet
(append alph (list (car bet) (cadr bet» (cons 'h (cddr bet»)

'(lambda (x) (+ 1 x»
«lambda (x) (+ 1 x» 4)
(defun incr (x) (+ 1 x»
(incr 6)
(setq incr 'december)
(grindef incr)
(grindef (quote incr»
incr

; PROBLEM 2
; Use defun to create a function that switches the order of 2
; elements in a list the same way that the following lambda
; expression does it.

«lambda (x) .(list (cadr x) (car x»)
, (a b»

PROBLEM 3
Presented below are three functions for computing factorial:
factO, fact1, and fact2. FactO is a recursive function taken
directly from the definition of factorial. The second, fact1,
is an iterative fortranesque example using prog. The final
example is also an iterative implementation using the new style
"do" function. Note that there is no body to the do. Write
three separate functions similiar in style to the three
factorial functions that compute the sum of a list of fixnums.
Thus (sum '(4 6 3 5 » should evaluate to 22 (octal) and
(sum '(» should evaluate to zero. "sumO" should be recursive,

; "sum1" should be iterative and use prog, and "sum2" should use
; the do function.

-Page 3-

Worksheet 2

(defun factO (n)
(cond « = nO) 1)

(t (* n (factO (1- n»»»

(defun fact1 (n)
(prog (result)

(setq result 1)
1abe1(cond «= n 0) (return result»)

(setq result (* n result»
(setq n (1- n»
(go 1abel»)

(defun fact2 (n)
(do «i n (1- i»

PROBLEM 3

(result 1 (* result i»)
«= i 0) result»)

Lisp - 1978

The Lisp function "reverse" will create a new list with the top
level elements reversed. Thus (reverse '(a b (c d) e» returns
(e (c d) b a). Write your own version of reverse called rev1.
[Harder problem]: Also write a function rev2 which reverses
elements at all levels of a list. Thus
(rev2 '(a (b c (d e) f g) (h i) k» should return:
(k (i h) (g f (e d) c b) a).

PROBLEM 4
The function "de1q" is a destructive function -- that is rp1aca
and rplacd are used to actually delete the specified element
from the given list. Below is a function "remove1" which
returns a new list with the requested element removed. Write
an iterative function which uses "do" that performs the same
task.

(defun remove1 (thing a-list>
(cond «null a-list) nil)

«eq thing (car a-list»
(remove1 thing (cdr a-list»)

(t (cons (car a-list)
(remove1 thing (cdr a-list»»»

-Page 4-

NOTES:

Uap -+ A~RacicaI Intr~tIon
SoIuttan+ to!WQrkfhee' #Z:

Mona the ~ IhouId hive noticed from ,va+tln8~ f~ ~ In .. fht the foIoMIf:

.) n. functions "lUI. end "not· .. identical .

•);n. functtonI • ..,. end not alway. ~t. ;." of,... In ott. wordI, hy .. f'-. like
; -ooncr, "do., end '"prog.. AHhouF .. y ~ fot perfOfllllng +t opeqtlona.' they to controt
;onhw.ofeve~~
: I

i lallke Nylng
CCIIftII H.: ••)' Ct' r~»))

, I. :"

I •
, 1M Ia...... ~".va~tlng (or 3 .,.,.,) wll{ not". .".,. If ,.,. 1I'tI'IIIcuId.

i I
1 j' .; -, :

c) WelPC)logll. for living you the exaqlle Ctrl~f C.,.t. I~U In~ first Thoae of you who Nt there
I waiting for ,. to .. Un tomettllng ~,lelmecl !thlt r ret\lnl a aymboI whoM doe. not contain
! """ charact •• at all. (you, too, can .. t .t Ihia "'Yttertoua , .y ~ doing " .. , .. ,,11), 'or whatever
i that'. worth.) The Mctlon ,., as we no;, learned, doe when ~ .".... which ..
I' .. '.
; .flned .. ~Iona or bound to 0'* objec' •.

d):When Lisp !'Md. In a fbau" with a trilling ~, h fUIIber to ... In to. TIIIa Ia why eva ... tlng
, i C •• ttl ba •• It.), will ~ the output 10 Of , •• t411 Na. 11 •• to "Qdeclmal. Eva""1ng C •• t411

: I') wltl ~ver cNnge the value 0' :' of .. ';1ta CUNnt value Ia. C1l** about It.)

P~OBLEM 2
j

~ Idea ... wa. to use de"" to cnat. a ~ ~1cIn which wcddlperfonll the actton .. the .,.,. ~
•• ,nlon when pIM:ed In 1M hllctlonal poa~ Of ~ to be .. atuat~ .. In 0IIer~, cnate a Mctlon -twitch·
IUch tha, C .. ltch ,~. bU -> Cb .).

J

'.'un ... ltch fIIsn Ut.t C~ lI.n • I~.mp
, I I !

SolutiON Z 2 LItp -1878

PROBLEM 3

A couple of points a;-e worth noting here: The NCU$/ve definition of _.a \I not only the Ihorte.t, but Is also the one
which most clearly r4tpre.ents the algorithm whldI we are trying to !"""~,,,. We abo Ieamect ... Ier that the sWr -.­
can take a variable ~ of arguments. A catl to "', .. taltes place ~ meW of evaluating a list wttose cer I. the
iymbol -+- and whose cdr Is. Il,t of the 1fgIn8ftt~ we ~sh to paIS to'lhia ,,"tlon. We can Mally writ •• function
which will create and ev.luate IUCh a list:

(dofun SUII "lsU '(oval (cons '. IIsU»

ReC\l'sive definition::

(defun sUllIe" 1st),
(cond «null Ilat) I)

(t (+' (CM' list) (s"'" (cdr IIsU»»,)

Prog definition:

(d. fun sUIIIl (f 1st>

(P",09 eresu I t)

(setCf "'esult 8)

loop (cond «null lIat) (",etlll"n ",.sulh» i

(aetq ",esult (. result (CM' ~Ist»)
(setq list (cdr I isU)
(go loop»)

iterative definition:

(defun su.2 (list)
Cdo (" I ist (cdr I)

("'eault I C. ",esult CCM' I»).
((nu III) ",osu It»)

PROBLEM 4

It was possible to write these fll'lCtlons In .ever.1 _fferent way'. but • have given only the rectK,lve and iterative
definitions below. Agatn, we notice that the re~slve ,: definitions .e: f. more .tra!Ftforward than their Heratlve
counterparts. Note al.o that the Iterative deflnltl~ of ,,*vZ- does ~In' NCUslve' caR -- " would be quite hairy
trying to write -revZ- without any rectKs,lon ~t~er. Finally, IIpte .,.t the .flnltlOl"!' for v2" te.t only to see If
their arguments are atoms, not fMl lists a. the definitions; for v,· do. I ThI. Is becIUI!I 'WI" I • ., atom as well a ••
list, and (cond «.tOll x) Je) Is identical to (CoM ;ccnuil xl xU If -x~ I. nil. I
Cdofun ",evl (list)

(cond «nun lIa" nln
(t (append Crev! (cdl" list)) Cllat (et!" IIs.),»m,

C.fun ",ovl "IsU;
Cdo ((old-I:lst list (cdr o-.td-lIlnt

(new-I"lt ni I (cons (CM' .Id-~ II" MM-I,llt)))

«null .'d-'llt) new-lilt»)

i ,e.... .. -I t_Mf ~~ ~ r
_ !i ~1: I(I!I ,: i I
r f .. ~ . t i 0 I... ,. - ,. .!o I !

__ ;. . __ f! i I f i I a r i I r I:
_ ... 'J'- - t 9- f . ~ _ . I-.t"' ... - I - S Ot

t t~H iH!t i! In If j- ,
= , I. II I~ :"' If ~ ~ (I~ ~If I • !~."; _~~~~ ,~I'''' I. ~I ~: 1 -... is,. I " ~ f ... J = - -.- _ .• 0 - • I rf i i1'j'f': ,!-j---!. f -}
~ , IT it. lor ,,-.
!-f- J ~.! 1:' : r I I ~ = ". :: -1 -r- .'.1. ~ · ~ ."'" ocr '. I
.:= t· !--I- .•. ~- tot. ~ -· .. "' II -~ -.-
- = , ? i I ~'I } ! (. i'- ~ I ! • -: 1-1- .J' I t.!L. L'

: "IT • '-- f
"I~ Ii Ii i

r .. 1- I' · I I •. . • f i;:1 -, .
loC' " f J _, !of
i: I· lfl I

• 9- ~~ 1)C •

i ---f
i i

(i (1
... -.... --- -.. ~ ~ .. , .. - 1"-1·-- 1-

r ,i= = - ~ ~. = t- ,--- - .. . ~ - ~ ~
___ • N.

t .. _.. -- ,--. -;:; - -if' ~ ... ·1.... -- - -... -
~:....... - -----,:;-t E· l

~ .f ... --r-
ii. .. --...

-.. .­--­... ... ---.-.

I
lit

II

·f ,

!

PROBLEM .1

it I.t f. 'b ·C)
,,·C • ., C)
UI*t 1 'Ca • b) • fred 'ene)
CI'sU
U·I.t 1 nil 3 U
UI.I,Cn.t ClI.t nil))

Lisp, -- A R~dic~1 Intr~tlon

Worksheef,#3

(app.nd • Chow ... you) C'I I.t • today • 1))
Capp.nd (II., 1 2 3) n" • C4 5 nil 6))

Cputprop. • fr.d 13 '.,.)
(,.t • '.red ·a,.) .
C,., 'fred ·owe.-back-t ••••)
.CputPN)P 'fr.d 2 • -bact-t ••• s)

i,.t • fred ·o~.-b.ck""ax.s.)
ipl Is' ·fr.d)
freMprop 'fred -owe.-bact-t.x ••)

" C,et 'fred ·ewe.-back-t.xe.)

Cpt ·c.,.. ··subd .
'defun:frobnlc.'e ex) x)

. Cp' 'frob"lcate 'expr)
.',et 'frob~lcate ·.ubr)

Cprln' .• Ca b l.cU

'prine 'ea b I.~».
(print 'IS.ctlon 5.21)
Cprlnc • ,S.cHon 5.21l

Cexpfod.c • fred)
Cexplodec ·a/.b)
Ceicp lodec 'II .. • furinv .ytIbo I .1) .
(elCplodec 'U 2 3))
.. ..,Iode 'Ca ., c»

" • ..,Iode • (h I I I' he,.' en (I.., lod. CelCplodec ~ ,Hello vou?l))

C"pc 'pr lne ., ea •• Ii • c. h U." e t t aU
i.;.pe 'prlne' Ce.,Iodec • Hhus~tt.U
c.pc.,. , 1+ • e2 4 • au

. C..,car 'Uxp 'C.,3 • ..,.., c. It) In
ClllpCar '.(1"';''' be) C. 67 .n '(2 4 • In

Worttsheet 3

("pcar" + '(2 4 6 8). '(-2 -4 -6 -8»,
(.. pcar 'cons '(one two three) '(123»
(.. pcar ' (Ialllbda he II) (,putprop x y 'fathed)

, (USA fb(8ach 'Isaac)

'«(;tlorge 'JS8a~h AbrahaM»
(ge, "USR 'father>

2 Usp - 1-978

'·The following two functions are being Introdueed here aFl!i have not been mentl,oned Previously. lh, f~~lon .~" takes

two flxnums and retums the exponentiation 0' the first to the seeond, Note that slnee the magnltucfe 0' a fl~num must
be' an Integer, all results returned will be rounded to !nteg~rs, The '"",cllon "length" takes one argume"!t" • list, and
returns the number 0' elements, In that list" Here are some forms you can type In to see what these guy, "0.

(A S 2)
(A • -1)

('en~th '(1 CJ a 47 bernl~»
Clength '('1 (2 3) 4»
Clen9th '(»

PROBLEM 2

Use defun to crt>ate a ,unCtion "concatenate" which will t11ke two symbols as arguments and wtll retum a symbol whose
name Is the cQflCatenati!>" ~f the names of the arguments, In othe~ words, (CoOncatenate 'he '1o 'there) -->
he'lothere.

PROBLEM 3

On the last worksheet you ,defined afunettO!" "revZ· whle~, rev~~sed a Its't and all of the' .Iement, of the list which were
themselyes "s.ts, I.e. (rev2 • fa (b c) d ,.» --> (. " (c b) a). lisp has a built In funs:llon (•• \Ibr) called
"reverse" which retums a list with only the toplevel' elements of the list reversed, I.e. (.. ever •• "a (b c)," .» -->
Ce d (b c) .a). U~lng "mapcar" and "reverse", rewrite "rev2", ~- your !'leW detlninon'should be much slmpl~' than your
earlier ont>.

PROBLEM 4

, '

Write a function which will sort a list of numbers. Hint: Define ~ functions -- one which SQrts a list fA. recl,II'sve
manner, and another which takes a lllJI.'lber and ~ sorted list af numbers and retums a new IIJt with tnt number Inserted In .
the appropriate place. "Is easle~t If b9t" functions are recursive. Note also that If we substitute the predicate
·.Iphalt'ssp" for the predfcatt' "<ft, we can easl~ modlf~ the funetlon '0 sort symbols alphabetically. '

W I3 , ..
.UIp -1WI

PROBlEM 6

"low ... funcllon x Of prapedy functIoN. '" to " o. . . . '. '.

We'un Mho 'per.on)
, . C. ClII., -II." c..,cor •• (1 Cx)'·C "tlftU C .. I,.....,. ,.

Cdr tt., ... '-It!l •• H .
·' -11 •• ftll'C~ (cor 1I -ll •••) · II.U))

Clnul I II '-fl.'.) -1I.n).)

. .

IIow .. t _ a ~" .ta to wtIIkwlltl -r the functlc5a ~ I. the flrat,.. to -..ape. will ~ .lement
of the •• conc-n\. property which II .. coWr.sponcIIng ~Ietnent .f .. tNnI t ..

. .
C .. c 'C i.llbd. U •• her .on') Cpulprop t ,. 1 ft Id.H

;:C.br'" I ••• c ' 1· Jacob ellU)

'CC' •• ac t.~I)
'Cjacob e •• u)

·Ctedar _"e.I ;'-bat.lh)

Creuben .. f_on dan. 'ev' Nfl'''· I I I.aac_ Judah .. d llher aellul"" ,... ,Mn,aln)
·CeUphlz r .. 1 'eu~h ja'" tor.h)) . .

'If you can~ ·f •• out What's going on. few .~s10 try -

.C,... ' Mr"' •• 't Id.)
·Cp. (corC,., ' ·~Idl»· 'tldal

, ' 0 'Mr"".'
!Mho ' •••• c.)

PROBLEM 6

WrIte a symbolic dlffefentlator which can hindi Iona centalnlng "Ion, IIIUItlpl~tlon.'" ,xponeatlatlon. 'TN
.. flrst argufMnI 10 thI.· function should be the .x,preJslon whlc;h IS.Io ... iIIff.,entfated. 11'14 the Hcond ~, ahouI4 ...
• . the' yarlabl. to whlch.the dlffel'entlltlClf'l ,1hoUId '" perf"""" With ,..,.ct 10. ArIthmetic ... ~Iona are IIIOst •• slly
...... e-nted "'lIsta, with the car of thtJlat being ~ ."..,or cdr "'Inig (•• usual)., For .x
~Jc+4 should ,."resented •• i. c. 3 x) .).·The Ic'fUle. you IhouId IM". .. "ted below:

. . . '. . ;

che

- .1
.dx

·v
'~ •• "._ x

. dx

d .. 4Y
lu+,,) • - • -

dx .• x 'x

' ..
. . ,

- '.c..-v). II - •• ~ . :"

••
II·" '¥-1 ·cIu ·11. d"
.~ u ... y v 'ev u -

.. * * ..

Worbhe&t 3 4 ltap - 1978

An Important thing to not" ~re Is that your differentia tor sf10uld not actually attempt to ~rfonn the addition of two
eXpI'f'sslons. simply create the list sfructure which repre~ents their a~ltIon •. For "xa"1)le,. assuming your function were
caned "differentiate",

Cdl fte ... entlate 'C •. C+ a b) C+ II II» ,x) ,

8hould retum

But It should bt' obvious that this expression can be greatly ~ImpILfI~d to (+ a b), which Is Inde"d th" correct answer.

You may want to US" t~ simplifier given In c~pter 3 ~f the I'fo.tes In ,checking your answ"rs.

Llspprovldt's' a useful fun(:tloncalled "traee~ tor chec~lng and 'debugging functions you may write, It Is an IsID and
lakes a variable number of arguments whlc;h are names of defined functions. Then. whenever any of these fUflctions are
entered, llsp will print the name 0', the function, the argyments which are belng passed to t~ function, and a number
Indicating thf' depth to ,~ch the function Is recurslng. 'For'example, If we had done (trace dl fte ... ent late), t~n th"

previous example would have produced the following result:

U enter, ,di fte ... ent late «t. (. a b) (+ II y» II» ,
C2 ente ... dlffe ... entiate CC+ II y) xl)

(3 ente ... difte ... ent iate ex "x»
(3 exit dlffe"'entlate 1)
(3 ente ... dlffe ... entlate. (y II»
(3 exit diffe ... entiate 8)

C2 exit differentiate (•• 8»
C2 ente ... diffe ... entlate ,«. a b) xl)

(3 ente ... diffe"'entlate Ca x»
(3ex.lt dlffe"'entlate 8) ,
(3 ente ... dlffe ... entlate (b II»
(3 exit dlffe~en1fate 8)

(2 exit dlffe ... entiate l. 8 8»
U ex It d if f"rentiate (+ ,. (+ a b) (. 1 8» (. (+ x y). (+ 8 8»»

The fsubl' ".untrac." will dlscontlnu" tracing .. given function, and If c;afled with no arguments, 'lilll untrec. an functions

~ICh are 'currently being traced.

If. you should manage to complete any ~r' a" of problems Z t~ough 6, we would greatly appreciate your turning In a

listing of your functions at the next session.

NOTES

LIIp~A!"'~
~ Io!WOIUheel .3 .

A few you ~~.;. .x ; ' ...
•) Pllelng wrtlcal'" __ ~ ayIIIIIoI t. ~ 1o"'1hIfytnp eecIj of .. · In
. ,.. .xceptlon to 11 .. 1 If • WItIcaI «,j II ~ ~ Ii.., ... N' I •••

... c.II.IlIty
,

') The MctIoN.· ... -.....r .. actually, -+ ·1-... ...,;'fIne .-.....c •
... • "IIIIpcar" ~ taU GIlly two :

,
.de •• IIIpC lI.tlOft n

. Cde cc.p ... 11.' c.,. m:
CCIlU'1) ... 'i.U
Cf fWtCtI .. c...)))

i We'. 1iIpc .. (·fWtCtI u ,
.... u "

Cre,Sult. " .. c ". ,...,., "'~I" 'far' .. n))~i
. CCIlU.1I) ".n)

1

PROBLEM 2

'IN. problem II IOIved .. t y ltv ~ '",. :09 -t* ~ i.e two
.... Ia •• together D.',..
We' ~ .. ') ClIf'''' ! -+'eM: .) _I~ "nt

PROBlEM 3

ElMftllany. lie .n.., here 1110 -+ ltv"""" ~~ lIMn .. t.
......... ver tN. new ... ltv 1iIIPIYInI" 1" ~ •.

'def. N¥2 Clian
eo..i ".t ... aU .. aU

Ct c".vwse 'N¥2' "tmtn

Solutions 3 lIlP - 'WI

PROBLEM 4'

Thi. hfttlon wOfk. 'v taking the cdr 0' the I.t It Is gtv"', lOtting it, ani then InIertIng the car of .. n.t Intc tN. new
" '. I ' loned list. Not. that the cdr t be lOI'ted flrat tie'" .tt~ to!tnaert .. car.1nce IIfN«t" 1hat ttl

aeCond ~t Is '!ready lOI'ted. Not •• 110 that" ~ replace ~ ~t.!'<" witt,. functions
aft be uaed to 10ft II.t, of .toms. '

("fun sort (list)
Ccond ((null IIsU nl f)

Ct ""s.rt (car IIsU (Iort :Ccdr, IIlth»» , ,

Cdefun Inlert (.t~ sorted-I lit)
Ccond «null sorted-HIt} (lilt .tOll»

«e ~to. (car lorted-Illt» 4eons .t .. lorted-Illt,)
Ct (COni (car lorted-lIlt) C'IIII"t ". Ccdr ~orle!l-lIlmJ)))

PROBLEM 5

Ev.luatlng (who 'Dr) rebmed • lilt 0' .ittamo. granddlitdren. I It ,del"' • ., .ppelldlllll logether the "kids"
I ,

properties of •• ch 0' abraham', "kids".

PROBLEM 6

The following ex and the deflnltlona Qf "nuipe. and ~ ~ above both MIlk 0' the funcllon
"~II· whtch w. 'WIll brt.fly Introduc. Mre. :Aa II. nan,. may .y, ~ flral,wgument to "funcall" II the name of •

function 10 be call.d; .nd the ...,~ nt. io "fWIca"" are . .,..,len .. lobe, to the fwtctk.n betnG called.
For ex.mpt., Clune." 'car "I b cn I. equlvllem 10 "yIng (c .. 'c.i .. en; ,

, I '

In writing the differentiation ,,"tlon, It would be' POI~' to 1nc1ude!1 t •• 1 "or Mdt of the operation. (Iddltlon,

multiplication, or eXfllOM"llatlon) which CQ hllctlon ~ "'nelle, and thll Iii certainly • ~1Id wa., of IOIvlng the Problem.
" ,I .

The method w. have c:ho.sen, however, a .. ocllt.s r,It. d1fferentlftlon hllctlon WIth •• ch of the operations (by
mean. of property IIltl). 1he .~lfler whIctI.,e've Included here _lao 0' "'I t~.

C .. pc "IaMbdl Cx~) (putprop x V 'dlffn)
'C •• ")
'(dlffplus dlfftl ... dlffexpt»

("fun dlff (f x)

(cond «.q~I f x) I'
U.t~ f) I'
et (~call (.. _ (car f) 'dl,fn), xl))

I : ,! "'
Cd.fun diffplUi (f x) CCOllI '. CIllpCIr 'CII"'I CI) Cdlf' • x)): (etIt' f~'»

i
C"'un dl Uti ... (,f x)

4"'09 Cu v,:
... t~ u Ce_ f)

; 'I Ccond ((null (cdd" f)J \Cc m ,~ (co1 '. c fUm
Cret":"' Clts. '. Cliit '. u idlfp v~' cu., '. Vi ".Iff u xUh))

"i I I

.atun 1IIf'.." (f x)

.... Cv.):

C"'III. ec.Ir n • CuIIdr m
.... t"'" CI'.' '. i

a

CII.' '. IIr CI'.' .!-. ~,., '-iVlnl' W'ff:. xu, ,
CI'~' '. ".,."" ~.) ~II., 'e;...) Wlff ".nun

, '
, I c-.c • u...w. Cx 'It c,ut,..., x , • •• .,fnn ·c. -• II ~ f ..)

• - I · (.''''UI .1,..lnua .I.,U ••• 1 ".'" .,,,,,,» , f , .

Cafun •••• , Ce.,)
C..w C...... Cur • ." • C. - • " .. lei)' ;.

C""v '..w (1IIpCar' •,., (.. ~ ..",)))

C".un .,.,'Itv c..,)
cconct ce.,_ • ." • ."

eee.&', • ." (edl • .,»)
Ct c~." c", CCIr • ." '.I";n' ~Ir ~I"'I'" ..,),»)

C ... un ""'UI Ce.'
C"'e'. I ~)
Ccond ce. C' ... th .." 2) Ccadr ."u ., .. m

·' •• un .' Inua 'it."
We'e'e I .,)
cconct CC. C:'IftIJ'h • ." 2) .x"

C,.C~ CII.' '. Cc.-r ..,»)
Cupcar ." M ~It.t '- xU :(-"i"'))))))

I

Ca.un """" , CIIe'.'. 1 .."
cconct C , ,. I • ." "

C C. C,' ... 'h •• ' 2) CcHI' • .,),
, It C';'" • ...-nd

(1IIipC" ·u Cx) C~ u., ...) CII~' aU

C.'un .'-...otten' C • .,)

'de'.'e 1 ~,

.."U))

cconct U ... I (cHI' •• ' I' "

icc ' .(elr~) '.) Ca.r aU
~, (".i xU) t

CC."" I Cecldr • .,U C.,.,..,. ',DI.I.len ." ,.,
, . I·

CC. f;' ... th • .,) 2) CcHI' • .,U .

Ct C~ CII.' '. (c.-r • .,,)
. Cupcar • CI Ca) ~II.' ... x -In ~ . ..,UU))

"'un,t Cw) '.'.t. 1."
Cconct (e..,., Ccadr.." I) "

ce~, Ccadr .." 1) I)
cc. ~I th • .,) 2),U
It • .pH) !

I
.. twa .'''_'' ..." CCIIMI "l1li" ~ ..) Ib Ct ..,n)

t' ' !

, ,
lIIp.- .a

