

Operator

ransformation
and Code

Generation

After execution of the front end’s storage allocation routine, the VAX—11

Code Generator enters its pure code generation phases in which the operators

are transformed into VAX-11 instructions and operand specifiers. The first of

these phases is the Local Code Generator, so named because it processes a

single operator at a time and generates instructions without regard to the

structure of the program as a whole. In this chapter we discuss our philosophy

of local code generation and present some detailed information on how this

phase of the VAX-11 Code Generator creates instructions for the VAanl

machine.

Background

When we started bootstrapping the compiler, we had neither a code gener-

ator nor access to sources for any of the code generators Freiburghouse had

written, although we knew they were written in TBL. We did not at that time

have any real inclination to use TBL to write our code generator. However, in

the interests of getting the compiler up and running, we decided to use TBL

to write the code generator, assuming that we would later rewrite it using

some more efficient technique. In fact we never did rewrite it, and that hasty

decision proved to be one of our best.

When we wrote our own TBL compiler for the VAX-11, we changed it to

suit our needs and our own style of programming and code generation. We

added the notion of explicit variables, a case action, an if... not action, and we

made it possible for any action to have a variable number of arguments. A

more subtle and (in conceptual terms) more important change was to make

the output of all actions explicit in the TBL. In designing our TBL for the

Local Code Generator, we provided known variables and let actions modify

them explicitly. For example, we defined a variable, result, that always holds

the address of the current operator, and we defined a number of temporary

variables that may be used to hold pointers to operators or operands as we

process them.

To give you an idea of the simplicity and elegance of a TBL scheme, we

have chosen a fragment from the routine in the Local Code Generator that

processes ADD operators:

152

Operator Transformation a

add._op:

getwmdata_mtypo(r

case (tempt,

addmmftxed

add_mtlt,

addumdecim

addmmlong)

add_nlong:

Here, the first actions pe

are obtaining the data type

represented by result) and

Subsequently, the case act

TBL routine to branch to. S

operands of various data ty

The benefits of the TB

First, it provided much g

matching code generation

complex coding sequences.

eration scheme as we wen

we would have felt compel

(At the very least, we wo

operand sequences.) For 0

latter approach would not

matching cannot begin to

alignment.

Another advantage of o

for special cases in a veryfls

sary between the Optimrz

does not need to know wh

Local Code Generator do

Overview

The Local Code Genera

it into a data structure cal

operator, locates the app

